Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

31results about How to "Raise the superconducting transition temperature" patented technology

Novel quasi-two-dimensional Ru-doped tellurium-containing superconducting material and preparation method thereof

The invention relates to a series of superconducting materials with the chemical general formula of CuIr<2-x>RuxTe4 (0.03 < = x < = 0.3) and a preparation method thereof, and belongs to the technicalfield of functional material manufacturing. The preparation method is of a traditional high-temperature solid-phase process. The method comprises the following steps: according to a corresponding stoichiometric ratio, fully grinding elemental Cu, ir, Ru and Te, vaccumizing and sealing a quartz tube, then vaccumizing the quartz tube and sealing the quartz tube at high temperature, and finally sintering the sealed quartz tube filled with raw materials in a furnace at 850 DEG C for 4 days to obtain polycrystalline powder of the CuIr<2-x>RuxTe4 (0.03 < = x < = 0.3). Physical properties are testedthrough a comprehensive physical property testing system (PPMS) is used for determining the superconductivity of the target product by measuring the physical properties such as conductivity, magneticproperties and heat capacity of the target product. This is the first reported Ru doped tellurium-containing AB2X4 type (A, B = metal ion, and X = O, S, Se, Te) series superconductor. By synthesizingthe compound, the application range of the AB2X4 type compound can be widened, so that the AB2X4 type compound has a huge application prospect in the aspects of electric power, communication, high-tech equipment, military equipment and the like.
Owner:SUN YAT SEN UNIV

Polystyrene colloidal sphere and niobium film composite heterostructure superconducting material and preparation method

The invention discloses a composite heterostructure superconducting material of polystyrene colloidal spheres and niobium films, comprising a substrate, a niobium film and a polystyrene colloid hexagonal array film, the niobium film is located on the substrate, and the polystyrene hexagonal array film The film is covered on the niobium film; the polystyrene hexagonal array film includes a plurality of polystyrene colloidal microspheres, and each polystyrene colloidal microsphere is closely arranged in a single layer to form a hexagonal array. The invention also discloses a preparation method of the superconducting material. In the present invention, polystyrene colloidal microspheres and niobium superconducting thin film materials are constructed as heterostructure nanostructure materials, and the critical temperature of superconducting transition is regulated by changing the contact area of ​​colloidal spheres and niobium substrates, thereby improving the superconductivity of niobium thin films. The conduction transition temperature Tconset, the material preparation process is simple, and the required equipment is less, which greatly reduces the preparation cost of the superconducting material and is conducive to popularization and application.
Owner:李志刚 +1

Method of preparing electron type high-temperature superconductor lanthanum cerium cuprum oxygen film

The invention provides a method for preparing an electron-doped high-temperature superconductor La2-xCexCuO4 film. Direct current magnetron sputtering equipment is used, and the invention comprises the following steps: firstly, according to La2-xCexCuO4 and the compounding ratio that 0.08 is less than or equal to x and x is less than or equal to 0.16, a solid phase reaction method is adopted to prepare a La2-xCexCuO4 ceramic target, and then the ceramic target is arranged on the target seat of a reaction chamber; secondly, substrate choice: SrTiO3, MgO or LaAlO3 is chosen, washed to be clean and then put on a heating stage in the reaction chamber, and the reaction chamber is closed; thirdly, the reaction chamber is vacuumized till the vacuum of a back side is superior to 2.0*10<-4>Pa; fourthly, the substrate is heated to 600-800 DEG C; fifthly, a reacting gas is charged in the reaction chamber; sixthly, the surface of the La2-xCexCuO4 ceramic target is pre-sputtered; seventhly, the heating stage is moved to the target position, and the La2-xCexCuO4 film begins to be prepared on the substrate; eighthly, after the reaction is ended, the reacting gas is stopped to be charged, the vacuum is pumped till the vacuum degree is superior to 2*10<-4> Pa, then the temperature of the substrate with La2-xCexCuO4 film prepared is dropped to the annealing temperature, and the annealing is performed; ninthly, the substrate with La2-xCexCuO4 film prepared is naturally cooled to the room temperature.
Owner:INST OF PHYSICS - CHINESE ACAD OF SCI

Novel quasi-two-dimensional selenium-doped tellurium-containing superconducting material and preparation method thereof

The invention relates to a novel quasi-two-dimensional selenium-doped tellurium-containing superconducting material and a preparation method thereof, and belongs to the technical field of functional material manufacturing, wherein the chemical general formula of the novel quasi-two-dimensional selenium doped tellurium-containing superconducting material is CuIr2Te4-xSex (x is greater than or equal to 0.0 and less than or equal to 0.5). According to the invention, a traditional high-temperature solid phase method is used, high-purity Cu, Ir, Te and Se powder (the purity is larger than or equal to 99.9%) with corresponding stoichiometric ratios are fully ground and then placed in a quartz tube, then vacuumizing and sealing are conducted, the sealed quartz tube containing raw materials is placed in a furnace, sintering is conducted for 120 h at a temperature of 850 DEG C to obtain CuIr2Te4-xSex (x is larger than or equal to 0.0 and smaller than or equal to 0.5) polycrystalline powder, the polycrystalline powder is tabletted after complete grinding, a flaky sample is placed into a vacuum sealed quartz tube, and sintering is performed at 850 DEG C for 240 hours to obtain a flaky CuIr2Te4-xSex (x is greater than or equal to 0.0 and less than or equal to 0.5) sample; and a comprehensive physical performance test system (PPMS) is used, and low-temperature performance of physical properties such as conductivity, magnetic property, specific heat capacity and the like of a sample is measured to finally determine that the target product has superconductivity.
Owner:SUN YAT SEN UNIV

Novel indium-containing transition metal telluride superconducting material and preparation method thereof

The invention relates to a novel indium-containing transition metal telluride superconducting material and a preparation method thereof, and belongs to the technical field of quantum function material manufacturing. The preparation method is a traditional high-temperature solid-phase method and comprises the following steps: fully grinding Cu, Ir, In and Te according to corresponding stoichiometric ratios, vacuumizing, sealing in a quartz tube, putting the sealed quartz tube filled with raw materials into a furnace, and sintering at 800 DEG C for 120 hours to obtain CuIr2-xInxTe4 (x is greater than or equal to 0 and less than or equal to 0.1) polycrystalline powder. According to the invention, the physical properties of the material are tested through a comprehensive physical property test system (PPMS), and the superconducting physical properties of a target material are deeply investigated by measuring the physical properties such as conductivity, magnetic properties, upper and lower critical magnetic fields and the like of the material; the novel quasi-two-dimensional indium-doped transition metal tellurium compound superconducting material is reported for the first time; and by synthesizing the compound superconducting material, a new member is added for the family of transition metal sulfide superconducting materials, and people are helped to understand the physical properties of high-temperature copper-based or iron-based superconducting.
Owner:SUN YAT SEN UNIV

Polystyrene colloidal sphere and niobium film composite heterogeneous structure superconducting material and preparation method

The invention discloses a polystyrene colloidal sphere and niobium film composite heterogeneous structure superconducting material, which comprises a substrate, a niobium film and a polystyrene colloidal hexagonal array film, wherein the niobium film is located on the substrate, and the polystyrene colloidal hexagonal array film coats the niobium film; the polystyrene colloidal hexagonal array film comprises multiple polystyrene colloidal microspheres; and single layers of the polystyrene colloidal microspheres are tightly arranged to form the hexagonal array. The invention also discloses a method of preparing the superconducting material. The polystyrene colloidal microspheres and the niobium superconducting film material are constructed into a heterogeneous structure nanostructure material; through changing the contact area between the colloidal spheres and the niobium substrate, the critical temperature for superconducting transition is regulated, the superconducting transition temperature Tc<onset> for the niobium film is thus improved; and the material preparation process is simple, needed devices are few, the superconducting material preparation cost is greatly reduced, and popularization and application are facilitated.
Owner:李志刚 +1

Method for preparing electronic high temperature superconductor lanthanum-cerium-copper oxide films

The present invention provides a method of preparing electron type high-temperature superconductor LCCO film, using pulse laser sedimentary equipment. The present invention comprises the following steps that: firstly, according to the ratio of La2-xCexCuO4, wherein, x is more than or equal to 0.08, and less than or equal to 0.16, a LCCO ceramic target material is prepared by adopting the solid state reaction method and arranged on a target seat of a reaction chamber; secondly, a substrate is selected; SrTiO3, MgO or LaAlO3 is selected, cleaned and put onto a heating table inside the reaction chamber, and then the reaction chamber is closed; thirdly, the reaction chamber is vacuumized till the back bottom vacuum is superior to 2.0x10-4Pa; fourthly, the substrate is heated to 675-800 DEG C by a heater; fifthly, reaction gas is pumped into the reaction chamber; sixthly, the surface of the LCCO ceramic target material is cleaned; seventhly, the LCCO ceramic target material is heated to besublimated, and then a LCCO film is initially prepared on the substrate; eighthly, after reaction is over, the reaction gas is stopped from being pumped into the reaction chamber, and the reaction chamber is vacuumized till the vacuum is superior to 2x10-4Pa; then the substrate with the prepared LCCO film is cooled to be at annealing temperature for annealing; finally the substrate with the prepared LCCO film is naturally cooled to be at room temperature.
Owner:INST OF PHYSICS - CHINESE ACAD OF SCI

Method for improving FeSe superconducting transition temperature by adding Mg

ActiveCN103360073BSynthetic sintering technology is simple and easyPromote practical progressSuperconductor detailsRoom temperatureSuperconducting transition temperature
The invention relates to a method for improving the FeSe superconducting transition temperature by adding Mg. The method comprises the following steps of: milling Fe powder and Se powder in an agate mortar or a planetary ball mill at the atomic ratio of Fe:Se=1: (0.90-1.05), pressing the mixture to obtain a thin sheet, placing the thin sheet into a high temperature differential scanning calorimeter or a tubular sintering furnace, sintering the thin sheet in a thermally insulating mode at 600-700 DEG C for 18-48 hours, cooling the sintered thin sheet to room temperature, again milling the sintered FeSe block into powder, milling the Mg powder and the FeSe powder in the agate mortar or the ball mill at the atomic ratio of (0.2-1):1, pressing the mixed powder to obtain the thin sheet, sintering the thin sheet in the high temperature differential scanning calorimeter or the tubular sintering furnace in the thermally insulating mode at 700-800 DEG C for 0.5-1 hour, and cooling the sintered thin sheet to room temperature, wherein the MgSe coexists with the unreacted FeSe to influence the lattice constant of the FeSe so that the superconducting transition temperature of the FeSe is increased from 9.8K to 12.1K, and the increase range is above 20%.
Owner:TIANJIN UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products