Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

106 results about "Darkfield illumination" patented technology

The principal elements of darkfield illumination are the same for both stereomicroscopes and more conventional compound microscopes, which often are equipped with complex multi-lens condenser systems or condensers having specialized internal mirrors containing reflecting surfaces oriented at specific geometries.

High throughput brightfield/darkfield wafer inspection system using advanced optical techiques

The broadband brightfield/darkfield wafer inspection system provided receives broadband brightfield illumination information via a defect detector, which signals for initiation of darkfield illumination. The defect detector forms a two dimensional histogram of the defect data and a dual mode defect decision algorithm and post processor assess defects. Darkfield radiation is provided by two adjustable height laser beams which illuminate the surface of the wafer from approximately 6 to 39 degrees. Each laser is oriented at an azimuth angle 45 degrees from the orientation of the Manhattan geometry on the wafer, and 90 degrees in azimuth from one another. Vertical angular adjustability is provided by modifying cylindrical lens position to compensate for angular mirror change by translating an adjustable mirror, positioning the illumination spot into the sensor field of view, rotating and subsequently moving the cylindrical lens. A brightfield beamsplitter in the system is removable, and preferably replaced with a blank when performing darkfield illumination. Light level control for the system is provided by a dual polarizer first stage. Light exiting from the second polarizer passes through a filter which absorbs a portion of the light and comprises the second stage of light control. The beam then passes through a polarizing beamsplitter. The second channel is further reflected and polarized and both beams thereafter illuminate the substrate.
Owner:KLA TENCOR TECH CORP

Automated protein crystallization imaging

An apparatus that automatically captures, stores and analyzes images of crystallization experiments contained in a number of crystallization plates. The apparatus includes a plate nest capable of accommodating protein crystallization plates of a plurality of different types, image acquisition optics, including an objective lens and an image capturing device, for focusing an image of a crystallization well, a light source including a bright field illumination device and a dark field illumination device, a nest positioning controller for moving the position of the plate nest with respect to the image acquisition optics to align various selected wells with said objective lens for imaging of the content of the wells. A database stores experiment information associated with each of the crystallization plates, the experiment information including identification of specific crystal forming parameter values, each of the crystallization plates is identified in said database by a unique identification code. A crystallization imaging controller controls crystallization imaging by retrieving the experiment information for each crystallization plate inserted into the apparatus, and controlling the nest positioning controller and the image acquisition optics in accordance with the retrieved experiment information. The apparatus captures multiple images of each crystal site using different light source and polarization conditions, and processes the multiple images to form extended fused images of each crystal site.
Owner:THERMO FISHER SCI ASHEVILLE

Lighting system and method used for dark field detection of defect in spherical optical element surface

The invention discloses a lighting system and method used for dark field detection of a defect in a spherical optical element surface. The lighting system comprises a spherical light source, a light source support, an optical element to be detected, an optical element multidimensional holding device, a microscopic imaging system, a charge coupling element, a computer and a motor, wherein the spherical light source comprises a uniform face light source and a zoom lens group lens barrel, a plurality of spherical light sources are circlewise arranged on the light source support at equal intervals, a zoom adjusting component comprises a zoom lens group lens barrel, a front lens fixing group, a zoom lens group, a back lens fixing group, a zoom lens barrel, a gear and a sliding rail; the optical element to be detected and the holding device are arranged below the light source support, the microscopic imaging system and the charge coupling element are arranged above the light source support, and the light axis of the microscopic imaging system, the circle centre of a circular surface formed by a plurality of light sources, and the sphere centre of the optical element to be detected are coaxial. According to the dark field lighting for defect detection in the spherical optical element surface, an imaging is a bright defect image in the dark background, the contrast ratio is good, thus being easy for subsequent image processing.
Owner:ZHEJIANG UNIV

EPI-illumination system for an array microscope

An epi-illumination system for an array microscope. For Kohler illumination, illumination light sources are placed, actually or virtually, at the pupils of respective individual microscope elements of an array microscope. In one Kohler illumination embodiment, the light source is a point source comprising the tip of an optical fiber placed on the optical axis at the pupil of its corresponding microscope element. In another Kohler illumination embodiment, the illumination light is provided by a reflective boundary placed on the optical axis of a corresponding microscope element. For critical illumination the light sources are placed at locations conjugate with their respective object planes so as to image the light sources thereon. For dark-field illumination, the support material around a microscope element lens, which is used to support an array of lenses, is fashioned to form an illumination optical element so that light from an off-axis source is directed by the illumination element toward the object plane at an angle such that light will not be reflected into the field of view of the imaging system, but scattered or fluorescence light will be within that field of view. The illumination optical element may be refractive element, a Fresnel element, a reflective element, a diffractive element, or some combination of one or more of these elements. An array of pinhole apertures may be provided to operate the array microscope in a confocal mode. All of the embodiments may be used for epi-fluorescence microscopy.
Owner:DMETRIX INC

Single axis illumination for multi-axis imaging system

InactiveUS7312432B2Improved telecentricityModify spatialBeam/ray focussing/reflecting arrangementsSolid-state devicesPhase maskCritical illumination
A single-axis illumination system for a multiple-axis imaging system, particularly an array microscope. A single-axis illumination system is used to trans-illuminate an object viewed with an array of imaging elements having multiple respective axes. The numerical apertures of the imaging elements are preferably matched to the numerical aperture of the illumination system. For Kohler illumination, the light source is placed effectively at the front focal plane of the illumination system. For critical illumination, the light source is effectively imaged onto the object plane of the imaging system. For dark field illumination, an annular light source is effectively provided. For phase contrast microscopy, an annular phase mask is placed effectively at the back focal plane of the objective lens of the imaging system and a corresponding annular amplitude mask is provided effectively at the light source. For Hoffman modulation contrast microscopy, an amplitude mask is placed effectively at the back focal plane of the objective lens of the imaging system and a slit is provided at a source of light of the illumination system. Structured illumination and interferometry, and a secondary source, may also be used with trans-illumination methods and apparatus according to the present invention.
Owner:DMETRIX INC

High throughput brightfield/darkfield water inspection system using advanced optical techniques

The broadband brightfield / darkfield wafer inspection system provided receives broadband brightfield illumination information via a defect detector, which signals for initiation of darkfield illumination. The defect detector forms a two dimensional histogram of the defect data and a dual mode defect decision algorithm and post processor assess defects. Darkfield radiation is provided by two adjustable height laser beams which illuminate the surface of the wafer from approximately 6 to 39 degrees. Each laser is oriented at an azimuth angle 45 degrees from the orientation of the manhattan geometry on the wafer, and 90 degrees in azimuth from one another. Vertical angular adjustability is provided by modifying cylindrical lens position to compensate for angular mirror change by translating an adjustable mirror, positioning the illumination spot into the sensor field of view, rotating and subsequently moving the cylindrical lens. A brightfield beamsplitter in the system is removable, and preferably replaced with a blank when performing darkfield illumination. Light level control for the system is provided by a dual polarizer first stage. Light exiting from the second polarizer passes through a filter which absorbs a portion of the light and comprises the second stage of light control. The beam then passes through a polarizing beamsplitter. The second channel is further reflected and polarized and both beams thereafter illuminate the substrate.
Owner:KLA CORP

High throughput brightfield/darkfield water inspection system using advanced optical techniques

The broadband brightfield / darkfield wafer inspection system provided receives broadband brightfield illumination information via a defect detector, which signals for initiation of darkfield illumination. The defect detector forms a two dimensional histogram of the defect data and a dual mode defect decision algorithm and post processor assess defects. Darkfield radiation is provided by two adjustable height laser beams which illuminate the surface of the wafer from approximately 6 to 39 degrees. Each laser is oriented at an azimuth angle 45 degrees from the orientation of the manhattan geometry on the wafer, and 90 degrees in azimuth from one another. Vertical angular adjustability is provided by modifying cylindrical lens position to compensate for angular mirror change by translating an adjustable mirror, positioning the illumination spot into the sensor field of view, rotating and subsequently moving the cylindrical lens. A brightfield beamsplitter in the system is removable, and preferably replaced with a blank when performing darkfield illumination. Light level control for the system is provided by a dual polarizer first stage. Light exiting from the second polarizer passes through a filter which absorbs a portion of the light and comprises the second stage of light control. The beam then passes through a polarizing beamsplitter. The second channel is further reflected and polarized and both beams thereafter illuminate the substrate.
Owner:KLA CORP

Corneal contact lens comprehensive detector and focusing evaluating algorithm thereof

The invention relates to a corneal contact lens comprehensive detector and a focusing evaluating algorithm of the corneal contact lens comprehensive detector. The corneal contact lens comprehensive detector comprises an optical imaging device, an electronic ocular, an objective table, a lifting device, a digital dial indicator, a singlechip and a tablet personal computer and corresponding measuring control software, wherein a collimation light pipe is arranged between the ocular and an objective lens; an LED (light-emitting diode) oblique incidence lighting device and a dark filed lighting device are also respectively arranged above and below the objective table; a digital dial indicator probe is contacted with the objective table, and a digital signal is output to a controller; the lifting device comprises a vertical arm fixed on a base, guide rails and a stepping motor arranged on the vertical arm, and a gear and rack transmission device which realizes the variable speed lifting by switching an electromagnetic clutch, and the stepping motor and the electromagnetic clutch are controlled by a controller. The corneal contact lens comprehensive detector and the focusing evaluating algorithm of the corneal contact lens comprehensive detector provided by the invention have the advantages that a lens surface quality detection function and a lens diameter measuring function are also integrated, the intelligent measurement of a lens is realized, and the detection efficiency and measurement accuracy are improved.
Owner:AUTEK CHINA
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products