Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

390 results about "Degree of unsaturation" patented technology

In the analysis of the molecular formula of organic molecules, the degree of unsaturation (also known as the index of hydrogen deficiency (IHD), double bond equivalents, or unsaturation index) is a calculation that determines the total number of rings and π bonds. A formula is used in organic chemistry to help draw chemical structures. It does not give any information about those components individually—the specific number of rings, or of double bonds (one π bond each), or of triple bonds (two π bonds each). The final structure is verified with use of NMR, mass spectrometry and IR spectroscopy, as well as qualitative inspection. It is based on comparing the actual molecular formula to what would be a possible formula if the structure were saturated—having no rings and containing only σ bonds—with all atoms having their standard valence.

Sulfonated block copolymers, method for making same, and various uses for such block copolymers

The present invention is a, solid block copolymer comprising at least two polymer end blocks A and at least one polymer interior block B wherein each A block is a polymer block resistant to sulfonation and each B block is a polymer block susceptible to sulfonation, and wherein said A and B blocks do not contain any significant levels of olefinic unsaturation. Preferably, each A block comprising one or more segments selected from polymerized (i) para-substituted styrene monomers, (ii) ethylene, (iii) alpha olefins of 3 to 18 carbon atoms; (iv) hydrogenated 1,3-cyclodiene monomers, (v) hydrogenated monomers of conjugated dienes having a vinyl content less than 35 mol percent prior to hydrogenation, (vi) acrylic esters, (vii) methacrylic esters, and (viii) mixtures thereof; and each B block comprising segments of one or more polymerized vinyl aromatic monomers selected from (i) unsubstituted styrene monomers, (ii) ortho-substituted styrene monomers, (iii) meta-substituted styrene monomers, (iv) alpha-methylstyrene, (v) 1,1-diphenylethylene, (vi) 1,2-diphenylethylene and (vii) mixtures thereof. Also claimed are processes for making such block copolymers, and the various end uses and applications for such block copolymers.
Owner:KRATON POLYMERS US LLC

Amine organoborane complex initiated polymerizable compositions containing siloxane polymerizable components

In one embodiment the invention is a polymerizable composition comprising a) an organoborane amine complex; b) one or more of monomers, oligomers or polymers having olefinic unsaturation which is capable of polymerization by free radical polymerization; c) one or more compounds, oligomers or prepolymers having a siloxane backbone and reactive moieties capable of polymerization; and d) a catalyst for the polymerization of the one or more compounds, oligomers or prepolymers having a siloxane backbone and reactive moieties capable of polymerization. This composition may further comprise a compound which causes the organoborane amine complex to disassociate. In a preferred embodiment, the two part composition further comprises a compound which is reactive with both the b) one or more of monomers, oligomers or polymers having olefinic unsaturation which is capable of polymerization by free radical polymerization; and the c) one or more compounds, oligomers or prepolymers having a siloxane backbone and reactive moieties capable of polymerization. This composition can be polymerized by contacting the two parts of the composition. In another embodiment the invention is an organoborane amine complex comprising an alkyl borane having ligands which are alkyl, cycloalkyl or both and an amino siloxane.
Owner:DOW GLOBAL TECH LLC

Certain arylaliphatic and heteroaryl-aliphatic piperazinyl pyrazines and their use in the treatment of serotonin-related diseases

The invention relates to compounds of the general formula (I):
wherein
    • Ar is optionally substituted aryl or heteroaryl;
    • A is (i) —O—, —S—, —SO2—, —NH—, (ii) a C1-4-alkyl- or C1-6-acyl-substituted nitrogen atom or (iii) a C1-8-alkylene chain or a heteroalkylene chain having 2 to 8 chain atoms, which optionally contains at least one unsaturation, and which may be substituted and/or contain a bridge to form a saturated or partially or fully unsaturated ring having 3-8 ring members;
    • B is —C(R4)(R5)—, —OC(R4)(R5)—, —N(R6)C(R4)(R5)—, —N(R6)—, —O—, —S— or —SO2—;
    • R is optionally substituted C3-8-cycloalkyl, aryl or heteroaryl;
    • R1 is (i) a saturated or unsaturated azacyclic or aminoazacyclic ring, or a saturated diazacyclic or aminodiazacyclic ring, which has 4 to 7 ring members, or a saturated aminoazabicyclic, azabicyclic or diazabicyclic ring which has 7 to 10 ring members, which rings optionally are substituted in one or more positions, or a group —[C(R4)(R5)]xN(R2a)(R3a)];
    • R2a, R3a, R4, R5, R6 and x are as defined in the claims, and n is 0 or 1; and pharmaceutically acceptable salts, hydrates and prodrug forms thereof.
The compounds may be prepared by per se conventional methods and can be used for treating a human or animal subject suffering from a serotonin-related disorder, such as eating disorders, especially obesity, memory disorders, schizophrenia, mood disorders, anxiety disorders, pain, sexual dysfunctions, and urinary disorders. The invention also relates to such use as well as to pharmaceutical compositions comprising a compound of formula (I).
Owner:PROMIMAGEN LTD +1

Process for the oligomerization of α-olefins having low unsaturation

A process is disclosed for the preparation of a poly(α-olefin) polymer wherein the process comprises polymerizing at least one α-olefin in the presence of hydrogen and a catalytically effective amount of catalyst comprising the product obtained by combining a metallocene catalyst with a cocatalyst, the metallocene catalyst being at least one meso compound of general formula:wherein:A1 and A2 are independently selected from the group consisting of mononuclear and polynuclear hydrocarbons;M1 is a metal from group IVb, Vb, or VIb of the Periodic Table;R1 and R2 are independently selected from the group consisting of hydrogen, C1–C10 alkyl, C1–C10-alkoxy, C6–C10 aryl, C6–C10 aryloxy, C2–C10 alkenyl, C7–C40 arylalkyl, C7–C40 alkylaryl, C8–C40 arylalkenyl and halogen; R7 is selected from the group consisting of:═BR11, ═AlR11, —Ge—, —Sn—, —O—, —S—, ═SO, ═SO2, ═NR11, ═CO, ═PR11 and ═P(O)R11, whereR11, R12, and R13 are independently selected from the group consisting of hydrogen, halogen, C1–C10 alkyl, C1–C10 fluoroalkyl, C6–C10 aryl, C6–C10 fluoroaryl, C1–C10 alkoxy, C2–C10 alkenyl, C7–C40 arylalkyl, C8–C40 arylalkenyl, and C7–C40 alkylaryl, or R11 and R12 or R11 and R13, in each case with the atoms connecting them, form a ring; and M2 is selected from the group consisting of silicon, germanium, and tin;R8 and R9 are independently selected from the group consisting of hydrogen, halogen, C1–C10 alkyl, C1–C10 fluoroalkyl, C6–C10 aryl, C6–C10 fluoroaryl, C1–C10 alkoxy, C2–C10 alkenyl, C7–C40 arylalkyl, C8–C40 arylalkenyl, and C7–C40 alkylaryl;m and n are identical or different and are zero, 1, or 2, with m plus n being zero, 1 or 2.
Owner:CHEMTURA CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products