Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

39 results about "Glycan biosynthesis" patented technology

Biosynthesis pathway of N-linked glycoproteins: The synthesis of N-linked glycan starts in the endoplasmic reticulum, continues in the Golgi and ends at the plasma membrane, where the N-linked glycoproteins are either secreted or becomes embedded in the plasma membrane.

Glycoconjugation of polypeptides using oligosaccharyltransferases

InactiveUS20100286067A1HydrolasesPeptide/protein ingredientsSialic acidBacillosamine
The current invention provides polypeptides and polypeptide conjugates that include an exogenous N-linked glycosylation sequence. The N-linked glycosylation sequence is preferably a substrate for an oligosaccharyltransferase (e.g., bacterial PgIB), which can catalyze the transfer of a glycosyl moiety from a lipid-bound glycosyl donor molecule (e.g., a lipid-pyrophosphate-linked glycosyl moiety) to an asparagine (N) residue of the glycosylation sequence. In one example, the asparagine residue is part of an exogenous N-linked glycosylation sequence of the invention. The invention further provides methods of making the polypeptide conjugates that include contacting a polypeptide having an N-linked glycosylation sequence of the invention and a lipid-pyrophosphate-linked glycosyl moiety (or phospholipid-linked glycosyl moiety) in the presence of an oligosaccharyltransferase under conditions sufficient for the enzyme to transfer the glycosyl moiety to an asparagine residue of the N-linked glycosylation sequence. Exemplary glycosyl moieties that can be conjugated to the glycosylation sequence include GlcNAc, GlcNH, bacillosamine, 6-hydroybacillosamine, GalNAc, GaINH, GlcNAc-GlcNAc, GlcNAc-GlcNH, GlcNAc-Gal, GlcNAc-GlcNAc-Gal-Sia, GlcNAc-Gal-Sia, GlcNAc-GlcNAc-Man, and GlcNAc-GlcNAc-Man(Man)2. The transferred glycosyl moiety is optionally modified with a modifying group, such as a polymer (e.g., PEG). In one example, the modified glycosyl moiety is a GIcNAc or a sialic acid moiety.
Owner:RATIOPHARM GMBH +1

N-linked glycosylation alteration in E0 and E2 glycoprotein of classical swine fever virus and novel classical swine fever virus vaccine

E2 is one of the three envelope glycoproteins of Classical Swine Fever Virus (CSFV). E2 is involved in several functions including virus attachment and entry to target cells, production of antibodies, induction of protective immune response in swine, and virulence. Seven putative glycosylation sites in E2 were modified by site directed mutagenesis of a CSFV Brescia infectious clone (BICv). A panel of virus mutants was obtained and used to investigate whether the removal of putative glycosylation sites in the E2 glycoprotein would affect viral virulence/pathogenesis in swine. We observed that rescue of viable virus was completely impaired by removal of all putative glycosylation sites in E2, but restored when mutation N185A reverted to wild-type asparagine produced viable virus that was attenuated in swine. Single mutations of each of the E2 glycosylation sites showed that amino acid N116 (N1v virus) was responsible for BICv attenuation. N1v efficiently protected swine from challenge with virulent BICv at 3 and 28 days post-infection suggesting that glycosylation of E2 could be modified for development of CSF live-attenuated vaccines. Additionally, a new developed virus, contained deletions of putative glycosylation sites N1 in E2 and N1 in E0 (6b), called N1E0/2v, induce a solid protection against the challenge at 3 and 28 days post-inoculation.
Owner:BORCA MANUEL +1

N-Linked Glycosylation Alteration in E1 Glycoprotein of Classical Swine Fever Virus And Novel Classical Swine Fever Virus Vaccine

E1, along with Erns and E2 is one of the three envelope glycoproteins of Classical Swine Fever Virus (CSFV). Our previous studies indicated that glycosylation status of either E2 or Erns strongly influence viral virulence in swine. Here, we have investigated the role of E1 glycosylation of highly virulent CSFV strain Brescia during infection in the natural host. The three putative glycosylation sites in E1 were modified by site directed mutagenesis of a CSFV Brescia infectious clone (BICv). A panel of virus mutants was obtained and used to investigate whether the removal of putative glycosylation sites in the E1 glycoprotein would affect viral virulence / pathogenesis in swine. We observed that rescue of viable virus was completely impaired by removal of all three putative glycosylation sites in E1. Single mutations of each of the E1 glycosylation sites showed that CSFV amino acid N594 (E1.N3 virus), as well the combined mutation of N500 and N513 (E1.N1N2 virus) resulted in BICv attenuation. Infection of either E1.N1N2 or E1.N3 viruses were able to efficiently protected swine from challenge with virulent BICv at 3 and 28 days post-infection. These results, along with those demonstrating the role of glycosylation of Erns and E2, suggest that manipulation of the pattern of glycosylation could be a useful tool for development of CSF live-attenuated vaccines.
Owner:US SEC AGRI

Compositions and methods for production of aglycosylated plasminogen

Compositions and methods for producing aglycosylated plasminogen (PLG) polypeptides and fragments and variants thereof are provided. Compositions of the invention include isolated nucleic acid molecules encoding aglycosylated PLG polypeptides in which the asparagine (Asn) residue corresponding to residue Asn-289 of the mature human PLG polypeptide has been substituted with an amino acid residue that does not support N-linked glycosylation at that position of the PLG polypeptide, as well as the aglycosylated PLG polypeptides encoded thereby. Expression constructs comprising these PLG-encoding nucleic acid molecules and transgenic plants comprising these expression constructs are also provided. Methods of the invention comprise introducing a PLG-encoding nucleic acid molecule of the invention into a plant of interest and culturing the plant under conditions to produce the aglycosylated PLG polypeptide. The aglycosylated PLG polypeptide allows for significant increases in production and yield of PLG from a plant-based expression system without comprising the ability of the PLG product to be activated to a polypeptide capable of binding fibrin and having serine protease activity, including biologically active plasmin that is also glycosylated. The activated aglycosylated plasmin is useful to treat diseases or conditions associated with a thrombus.
Owner:SYNTHON BIOPHARMACEUTICALS BV

Method for production of a bioengineered form of tissue plasminogen activator

The present invention relates to the recombinant method used for the production of soluble form of human tissue plasminogen activator variant. In this variant the threonine at position 103 of the endogenous tissue plasminogen activator is replaced by an asparagine leading to a new glycosylation site. At position 117 of the endogenous tissue plasminogen activator asparagine has been replaced by glutamine, leading to the removal of an N linked glycosylation site. At position 296-299 the amino acids lysine, histidine, arginine, and arginine have been replaced by four alanine amino acids. The invention further relates to the de novo synthesis of the nucleic acid sequence encoding tissue plasminogen activator, transformation of the constructed nucleic acid sequences into competent bacteria and sub-cloning of the same into mammalian expression vectors for the expression of the desired protein. DNA constructs comprising the control elements associated with the gene of interest have been disclosed. The recombinant human tissue plasminogen activator, according to the invention, and the salts and functional derivatives thereof, may comprise the active ingredient of pharmaceutical compositions for treatment of treatment of heart attack and stroke patients. These compositions are yet another aspect of the present invention.
Owner:阿维斯塔金格兰技术有限公司
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products