Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

133 results about "Multimodal imaging" patented technology

Multimodal Imaging A wide range of optical imaging modalities based on different contrast mechanisms have emerged in recent years. We have developed an integrated microscope that can perform structural and functional imaging of cells in 3-D and for extended periods of time.

Real-time contemporaneous multimodal imaging and spectroscopy uses thereof

The present invention comprises an optical apparatus, methods and uses for real-time (video-rate) multimodal imaging, for example, contemporaneous measurement of white light reflectance, native tissue autofluorescence and near infrared images with an endoscope. These principles may be applied to various optical apparati such as microscopes, endoscopes, telescopes, cameras etc. to view or analyze the interaction of light with objects such as planets, plants, rocks, animals, cells, tissue, proteins, DNA, semiconductors, etc. Multi-band spectral images may provide morphological data such as surface structure of lung tissue whereas chemical make-up, sub-structure and other object characteristics may be deduced from spectral signals related to reflectance or light radiated (emitted) from the object such as luminescence or fluorescence, indicating endogenous chemicals or exogenous substances such as dyes employed to enhance visualization, drugs, therapeutics or other agents. Accordingly, one embodiment of the present invention discusses simultaneous white light reflectance and fluorescence imaging. Another embodiment describes the addition of another reflectance imaging modality (in the near-IR spectrum). Input (illumination) spectrum, optical modulation, optical processing, object interaction, output spectrum, detector configurations, synchronization, image processing and display are discussed for various applications.
Owner:PERCEPTRONIX MEDICAL +1

Cross-blood-brain-barrier targeting multimodal nano-medicine used in brain tumor diagnosis

The invention belongs to the field of imaging medicines, and relates to a cross-blood-brain-barrier (cross-BBB) targeting multimodal nano-medicine used in brain tumor diagnosis. The invention especially relates to the synthesis of magnetic / fluorescent nano-diagnostic medicines with cross-BBB receptor active targeting effect and intermediate thereof. The invention also relates to an application of the medicine and the intermediate in living noninvasive brain tumor multimodal imaging. The multimodal nano-diagnostic medicine provided by the invention is respectively marked with tumor new vessel targeting group, cross-BBB transporting group, and magnetic and optical imaging group. The medicine is first targeted to tumor peripheral new vessels, then is delivered into brain with a receptor-mediated cross-BBB transportation effect, and is secondarily targeted to tumor cells. With magnetic resonance imaging / optical multimodal imaging techniques, and with the medicine, noninvasive high SNR tracing of brain tumor and especially BBB-undamaged brain tumor can be realized. The medicine provided by the invention can provide a novel reference approach for brain tumor preoperative localization and brain tumor resection under real-time image guidance.
Owner:FUDAN UNIV

Apparatus and method for multi-modal imaging using nanoparticle multi-modal imaging probes

An apparatus for multimodal imaging of an object includes a support stage for receiving an object to be imaged; an object supported on the stage, the object having been treated with a biocompatible imaging probe comprising nanoparticles carrying one or more targeting moieties and one or more diagnostic components for enabling capture of images of the object; a light source for producing a beam to illuminate the object; a filter positioned to receive and pass the beam toward the object; and a lens and camera system for capturing an image of the object. The apparatus may include a tiltable filter for filtering light from the source. The apparatus may include a mechanism for selectively directing light from the light source through a first filter assembly to produce a first beam of light of a first frequency range for illuminating an object on the stage in a first imaging mode or through a second filter assembly to produce a second beam of light of a second frequency range for illuminating an object on the stage in a second imaging mode, so that the lens and camera system captures light from the object illuminated by either the first or second beam of light to produce a first image in response to the first beam and a second image, different from the first image, in response to the second image. An x-ray source and phosphor plate may be included to provide an additional imaging mode.
Owner:CARESTREAM HEALTH INC

Multimodal imaging apparatus

The present invention relates to a multimodal imaging apparatus (1a, 1b) for imaging a process (63) in a subject (23), said process (63) causing the emission of gamma quanta (25, 61), said apparatus (1a, 1b) comprising a scintillator (3) including scintillator elements (31) for capturing incident gamma quanta (25, 61) generated by the radiotracer and for emitting scintillation photons (26) in response to said captured gamma quanta (25, 61), a photodetector (5) including photosensitive elements (33) for capturing the emitted scintillation photons (26) and for determining a spatial distribution of the scintillation photons, and a readout electronics (7) for determining the impact position of an incident gamma quantum in the scintillator (3) and/or a parameter indicative of the emission point of the gamma quantum (25, 61) in the subject (23) based on the spatial distribution of the scintillation photons, wherein the imaging apparatus (1a, 1b) is configured to be switched between a first operation mode for detecting low energy gamma quanta and a second operation mode for detecting high energy gamma quanta, wherein the high energy gamma quanta have a higher energy than the low energy gamma quanta, and the scintillator (3) is arranged to capture incident gamma quanta (25, 61) from the same area of interest (65) in the first operation mode and in the second operation mode without requiring a relative movement of the subject (23) versus the scintillator (3), wherein the scintillator (3) comprises an array of scintillator elements (31) including a first region with high energy scintillator elements (27) for capturing high energy gamma quanta and a second region with low energy scintillator elements (29) for capturing low energy gamma quanta; and/or the apparatus (1a, 1b) further comprises a positioning mechanism (35) for changing the orientation and/or position of the scintillator elements (31), in particular for tilting the scintillator elements (31), to switch the imaging apparatus (1a, 1b) between the first operation mode and the second operation mode.
Owner:KONINKLJIJKE PHILIPS NV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products