Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

61results about "Multiple discharge path tubes" patented technology

Luminescent ceramic for a light emitting device

A semiconductor light emitting device comprising a light emitting layer disposed between an n-type region and a p-type region is combined with a ceramic layer which is disposed in a path of light emitted by the light emitting layer. The ceramic layer is composed of or includes a wavelength converting material such as a phosphor. Luminescent ceramic layers according to embodiments of the invention may be more robust and less sensitive to temperature than prior art phosphor layers. In addition, luminescent ceramics may exhibit less scattering and may therefore increase the conversion efficiency over prior art phosphor layers.
Owner:LUMILEDS

Nanofiber Actuators and Strain Amplifiers

Nanofiber actuators and strain amplifiers having a material that generates a force or generates a displacement when directly or indirectly electrically driven. This material is an aerogel or a related low density or high density network comprising conducting fibers that are electrically interconnected and can substantially actuate without the required presence of either a liquid or solid electrolyte. Reversible or permanently frozen actuation is used to modify the properties of the actuator material for applications.
Owner:BOARD OF RGT THE UNIV OF TEXAS SYST

Arrangement for the generation of extreme ultraviolet radiation by means of electric discharge at electrodes which can be regenerated

The invention is directed to an arrangement for generating extreme ultraviolet (EUV) radiation based on a plasma that is generated by electric discharge. It is the object of the invention to provide a novel possibility for radiation sources based on an electric discharge by which a long lifetime of the electrodes that are employed and the largest possible solid angle for bundling the radiation emitted from the plasma are achieved. According to the invention, this object is met by providing coated electrodes in the form of two endless strip electrodes which circulate over guide rollers and which have at a short distance between them an area in which the electric discharge takes place. The coating is at least partially sacrificed through excitation by an energy beam and generation of plasma, and means for driving each strip electrode are arranged in such a way that during a revolution the strip electrodes, after immersion in a molten metal, are guided through a wiper for generating a defined thickness of coating material, are directed in a vacuum chamber to a location where the desired generation of plasma takes place, and are guided back into the molten metal after the electric discharge in order to regenerate the coating and to make electric contact between the electrodes and a pulsed high-voltage source.
Owner:USHIO DENKI KK

Soft x-ray laser based on Z-pinch compression of rotating plasma

A method and apparatus for producing soft x-ray laser radiation based on z-pinch compression of a rotating low pressure plasma column are disclosed. A rotating, low pressure plasma column is created by electric discharge or by laser excitation inside a containment tube. Rotation of the plasma may be induced by viscous drag caused by rotation of the tube, or by magnetically driven rotation of the plasma as it is created in a plasma gun in the presence of an axial magnetic field, or both. A high power electrical discharge is then passed axially through the rotating plasma column to produce a rapidly rising axial current, resulting in z-pinch compression of the rotating plasma column radially inwardly with resultant stimulated emission of soft x-ray radiation in the axial direction. A rotating containment tube used in combination with magnetically driven rotation of the plasma column results in a concave electron density profile that in turn results in reduced wall ablation and also reduced refraction losses of the resultant soft x-rays.
Owner:FARTECH

Electrode and arrangement with movable shield

The present invention comprises an electrode arrangement for a coating device with a stationary first electrode (3) and a second movable electrode (18), whose principle surfaces are opposing each other during coating, wherein the second electrode (18) may be moved along a plane parallel to the opposing principle surfaces, wherein at least one end face of an electrode running transversely to the principal surface an electrical shield (12, 19, 13) is provided, which extends at least partially parallel to the end face of one electrode, wherein at least one part (14) of the shield is formed so as to be movable.
Owner:APPLIED MATERIALS INC

Field emission cathode and x-ray tube embodying same

A field emission cathode has a field emitter and an extraction grid, and the field emitter and the extraction grid can be moved relative to one another. Such a field emission cathode is highly durable and exhibits a longer lifespan. An x-ray tube has a field emission cathode composed of a field emitter and an extraction grid that can be moved relative to one another. Such an x-ray tube is highly durable and exhibits a longer lifespan.
Owner:SIEMENS HEATHCARE GMBH

Method of manufacturing a fully integrated and encapsulated micro-fabricated vacuum diode

Disclosed is an encapsulated micro-diode and a method for producing same. The method comprises forming a plurality columns in the substrate with a respective tip disposed at a first end of the column, the tip defining a cathode of the diode; disposing a sacrificial oxide layer on the substrate, plurality of columns and respective tips; forming respective trenches in the sacrificial oxide layer around the columns; forming an opening in the sacrificial oxide layer to expose a portion of the tips; depositing a conductive material in of the opening and on a surface of the substrate to form an anode of the diode; and removing the sacrificial oxide layer.
Owner:NAT TECH & ENG SOLUTIONS OF SANDIA LLC

Actuator on the basis of geometrically anisotropic nanoparticles

In an actuator including at least one active electrode disposed in an electrolyte and comprising at least two webs of an electrically conductive material with a plurality of geometrically anisotropic nanoparticles disposed thereon and oriented uni-directionally in a preferential direction with an electrically conductive connection between the nanoparticles and the webs and a potential difference with respect to ground can be applied to the active electrode by a voltage or current source, the nanoparticles are connected in each case to two webs and the connections are material-interlocking.
Owner:KERNFORSCHUNGSZENTRUM KARLSRUHE GMBH

Arrangement for the generation of extreme ultraviolet radiation by means of electric discharge at electrodes which can be regenerated

The invention is directed to an arrangement for generating extreme ultraviolet (EUV) radiation based on a plasma that is generated by electric discharge. It is the object of the invention to provide a novel possibility for radiation sources based on an electric discharge by which a long lifetime of the electrodes that are employed and the largest possible solid angle for bundling the radiation emitted from the plasma are achieved. According to the invention, this object is met by providing coated electrodes in the form of two endless strip electrodes which circulate over guide rollers and which have at a short distance between them an area in which the electric discharge takes place. The coating is at least partially sacrificed through excitation by an energy beam and generation of plasma, and means for driving each strip electrode are arranged in such a way that during a revolution the strip electrodes, after immersion in a molten metal, are guided through a wiper for generating a defined thickness of coating material, are directed in a vacuum chamber to a location where the desired generation of plasma takes place, and are guided back into the molten metal after the electric discharge in order to regenerate the coating and to make electric contact between the electrodes and a pulsed high-voltage source.
Owner:USHIO DENKI KK

Vacuum electron power tube

A vacuum tube that may include but is not limited to a plurality of electrodes. A first electrode of the plurality of electrodes may be configured to operatively connect to an electrical source. A second electrode of the plurality of electrodes may be configured to operatively connect to a first load of a plurality of loads, wherein the first electrode may be configured to complete a first circuit through the second electrode and the first load. A third electrode of the plurality of electrodes may be configured to operatively connect to a second load of the plurality of loads that is independent from the first load, wherein the first electrode may be configured to complete a second circuit through the third electrode and the second load.
Owner:BALDWIN DAVID A +1

Ignition unit for an internal combustion engine

An ignition device for a combustion chamber of an internal combustion engine includes a first electrode and a second electrode, which is movable with the aid of an actuator. The ignition device is configured to generate a first ignition spark when a contact between the first and second electrode is interrupted. To accomplish this, the second electrode is moved away from the first electrode. A third electrode is also provided, which is spaced apart from the first electrode. With the aid of the third electrode, a second ignition spark can be generated by moving the second electrode away from the other two electrodes. With the three electrodes, the ignition unit is configured to allow the two ignition sparks to pass through a volume formed between the electrodes in the direction transverse to the longitudinal extension of the ignition sparks in the course of the movement of the second electrode.
Owner:ROBERT BOSCH GMBH

Logical operation element field emission emitter and logical operation circuit

A logical operation element and logical operation circuit are provided that are capable of high speed and a high degree of integration. A logical operation circuit has a construction wherein, in a logical operation element, the anodes of first and second field emission type microfabricated electron emitters are put at the same potential and two or more signal voltages are input to gate electrodes corresponding to these emitters. A NOR element so arranged that when a high potential input signal is input to either of the two lines, electron emission occurs from the emitters and the potential of said anodes is lowered, and a NAND element wherein the cathodes of the first and second field emission type microfabricated electron emitters are connected in series, two signal voltages are applied to the gate electrodes corresponding to the first and second emitter and the anode potential of the second emitter is lowered when the two input signals are high potential are employed.
Owner:SUMITOMO ELECTRIC IND LTD

Electron-emitting cold cathode device

One or more embodiments of the invention concern a device comprising: a cathode that lies on a cathode plane and includes, in an active region one or more cathode straight-finger-shaped terminals with a main extension direction parallel to a first reference direction; for each cathode terminal, one or more electron emitters formed on, and in ohmic contact with, said cathode terminal; and a gate electrode that lies on a gate plane parallel to, and spaced apart from, said cathode plane, does not overlap the cathode and includes, in the active region, two or more gate straight-finger-shaped terminals with a main extension direction parallel to the first reference direction; wherein the gate terminals are interlaced with said cathode terminal(s).
Owner:SELEX ES

Printed logic gate

ActiveUS9838018B2Logic circuits using gas-filled tubesAdditive manufacturing with liquidsElectricityManufactured apparatus
An additively manufactured apparatus having a gas filled sealed cavity containing at least two additively manufactured cathodes and an additively manufactured anode spaced from the cathodes such that a continuous electric discharge of the gas stimulated between at least one of the cathodes and the anode provides a Boolean function output at the anode corresponding to electrical input signals at two of the cathodes.
Owner:BRITISH TELECOMM PLC

High power diode utilizing secondary emission

InactiveUS20050199982A1Great diode lifetimeHigh vacuum environmentLaser detailsSemiconductor/solid-state device manufacturingKryptonSecondary emission
A high power diode includes a cathode for emitting a primary electron discharge, an anode, and a porous dielectric layer, e.g. a honeycomb ceramic, positioned between the cathode and the anode for receiving the primary electron discharge and emitting a secondary electron discharge. The diode can operate at voltages 50 kV and higher while generating an electron beam with a uniform current density in the range from 1 A / cm2 to >10 kA / cm2 throughout the area of the cathode. It is capable of repetitively pulsed operation at a few Hz with pulse duration from a few nanoseconds to more than a microseconds, while the total number of pulses can be >107 pulses. The diode generates minimal out-gassing or debris, i.e. with minimal ablation, providing a greater diode lifetime, and can operate in a high vacuum environment of 10−4 Torr. The high power diode is useful in many applications requiring a high current electron beam. Exemplary applications include x-ray photography of large samples, polymerization processes, sterilization of biological and chemical agents, irradiation of food, and as a pump for lasers, e.g. excimer lasers such as krypton fluorine (KrF) lasers.
Owner:THE UNITED STATES OF AMERICA AS REPRESENTED BY THE SECRETARY OF THE NAVY
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products