Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

212results about "Multiplier circuit arrangements" patented technology

Fast recovery electron multiplier

An improved electron multiplier bias network that limits the response of the multiplier when the multiplier is faced with very large input signals, but then permits the multiplier to recover quickly following the large input signal. In one aspect, this invention provides an electron multiplier, having a cathode that emits electrons in response to receiving a particle, wherein the particle is one of a charged particle, a neutral particle, or a photon; an ordered chain of dynodes wherein each dynode receives electrons from a preceding dynode and emits a larger number of electrons to be received by the next dynode in the chain, wherein the first dynode of the ordered chain of dynodes receives electrons emitted by the cathode; an anode that collects the electrons emitted by the last dynode of the ordered chain of dynodes; a biasing system that biases each dynode of the ordered chain of dynodes to a specific potential; a set of charge reservoirs, wherein each charge reservoir of the set of charge reservoirs is connected with one of the dynodes of the ordered chain of dynodes; and an isolating element placed between one of the dynodes and its corresponding charge reservoir, where the isolating element is configured to control the response of the electron multiplier when the multiplier receives a large input signal, so as to permit the multiplier to enter into and exit from saturation in a controlled and rapid manner.
Owner:BIO RAD LAB INC

Wavelength measurement system

ActiveUS20090101800A1Stable outputStable, very repeatable, high-speed FBG interrogationRadiation pyrometryWavelength-division multiplex systemsFiberObservational error
A fiber optic interrogator includes a broadband optical source, at least one beam splitter directing output of the optical source to an array of fiber optic gratings, at least one linear transmission or reflection filter, at least one optical receiver and at least one amplifier associated with each receiver. In one aspect of the invention, a linear transmission filter is used to convert the change in center wavelength of a grating reflectivity spectrum to a change in intensity, which is proportional to the change in the grating central wavelength. In another aspect of the invention, a pair of opposite-sloped linear transmission filters are utilized to normalize the received and filtered reflections with respect to total optical power. In another aspect of the invention, the optical source is pulsed, and return pulses from each fiber optic grating to be measured are sampled by the interrogator at different times. In another aspect of the invention, the source driver randomizes ripple phase versus wavelength to reduce wavelength measurement error. In another aspect of the invention, active closed-loop circuits are added to the receiver amplifiers to stabilize the amplifier output. In yet another aspect of the invention, a temperature-controlled compensating array of fiber optic gratings is interrogated each time the measurement array of gratings is interrogated. In still another aspect of the invention, a fast reset analog integrator is added to the amplifier stage(s) to improve the signal detection threshold. In another aspect of the invention, the wavelength measurement is compensated for the effects of one grating shading another.
Owner:AVALON SCI

Systems, circuits and methods for extending the detection range of an inspection system by avoiding circuit saturation

Inspection systems, circuits and methods are provided to enhance defect detection by addressing saturation levels of the amplifier and analog-digital circuitry as a limiting factor of the measurement detection range of an inspection system. In accordance with one embodiment of the invention, a method for inspecting a specimen includes directing light to the specimen and detecting light scattered from the specimen. However, the step of detecting may use only one photodetector for detecting the light scattered from the specimen and for converting the light into an electrical signal. The step of detecting also includes generating a first signal and a second signal in response to the electrical signal, where the second signal differs from the first. For example, the first signal may be generated to have a higher resolution than the second signal for detecting substantially lower levels of the scattered light. In most cases, the method may use the first signal for detecting features, defects or light scattering properties of the specimen until the first signal reaches a predetermined threshold value. Once the predetermined threshold value is reached, however, the method may use the second signal for said detecting.
Owner:KLA TENCOR TECH CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products