Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

132 results about "Laser safety" patented technology

Laser safety is the safe design, use and implementation of lasers to minimize the risk of laser accidents, especially those involving eye injuries. Since even relatively small amounts of laser light can lead to permanent eye injuries, the sale and usage of lasers is typically subject to government regulations.

Laser diode optical transducer assembly for non-invasive spectrophotometric blood oxygenation monitoring

InactiveUS7047054B2Easily and securely attachedLight couplingDiagnostic recording/measuringSensorsCapacitanceFiber
A non-invasive near infrared spectrophotometric monitoring transducer assembly includes a housing member, which is adhered directly on a patient's skin. The housing member contains a prism coupled to a flexible and lightweight single core optical light guide, which provides a means of transferring narrow spectral bandwidth light from multiple distant laser diodes of different wavelengths by use of a multi-fiber optic light combining assembly. Different wavelengths are needed to monitor the level of blood oxygenation in the patient. The assembly also contains a planar light guide mounted on the prism located in the housing member, which light guide contacts the patient's skin when the housing member is adhered to the patient's skin. The light guide controls the spacing between the prism and the patient's skin, and therefore controls the intensity of the area on the patient's skin which is illuminated by the laser light. The housing member contains a photodiode assembly, which detects the infrared light at a second location on the skin to determine light absorption. The photodiode assembly is preferably shielded from ambient electromagnetic interference (EMI) by an optically transparent EMI attenuating window. This rigid window placed over the photodiode also provides a planar interface between the assembly and the skin, improving optical coupling and stability as well as reducing the capacitive coupling between skin and the photodiode resulting in further EMI attenuation. The housing may be associated with a disposable sterile hydrogel coated adhesive envelope, or pad, which when applied to the patient's skin will adhere the housing to the patient's skin. The transducer assembly will thus be reusable, and skin-contacting part of the device, i.e., the envelope or pad can be discarded after a single use. The assembly also includes a laser safety interlock means, which is operable to turn off the laser light output in the event that the assembly accidentally becomes detached from the patient's skin.
Owner:CAS MEDICAL SYST

Laser diode optical transducer assembly for non-invasive spectrophotometric blood oxygenation

A non-invasive near infrared spectrophotometric monitoring transducer assembly includes a housing member, which is adhered directly on a patient's skin. The housing member contains a prism coupled to a flexible and lightweight single core optical light guide, which provides a means of transferring narrow spectral bandwidth light from multiple distant laser diodes of different wavelengths by use of a multi-fiber optic light combining assembly. Different wavelengths are needed to monitor the level of blood oxygenation in the patient. The assembly also contains a planar light guide mounted on the prism located in the housing member, which light guide contacts the patient's skin when the housing member is adhered to the patient's skin. The light guide controls the spacing between the prism and the patient's skin, and therefore controls the intensity of the area on the patient's skin which is illuminated by the laser light. The housing member contains a photodiode assembly, which detects the infrared light at a second location on the skin to determine light absorption. The photodiode assembly is preferably shielded from ambient electromagnetic interference (EMI) by an optically transparent EMI attenuating window. This rigid window placed over the photodiode also provides a planar interface between the assembly and the skin, improving optical coupling and stability as well as reducing the capacitive coupling between skin and the photodiode resulting in further EMI attenuation. The housing may be associated with a disposable sterile hydrogel coated adhesive envelope, or pad, which when applied to the patient's skin will adhere the housing to the patient's skin. The transducer assembly will thus be reusable, and skin-contacting part of the device, i.e., the envelope or pad can be discarded after a single use. The assembly also includes a laser safety interlock means, which is operable to turn off the laser light output in the event that the assembly accidentally becomes detached from the patient's skin.
Owner:EDWARDS LIFESCIENCES CORP

Laser diode optical transducer assembly for non-invasive spectrophotometric blood oxygenation

A non-invasive near infrared spectrophotometric monitoring transducer assembly includes a housing member, which is adhered directly on a patient's skin. The housing member contains a prism coupled to a flexible and lightweight single core optical light guide, which provides a means of transferring narrow spectral bandwidth light from multiple distant laser diodes of different wavelengths by use of a multi-fiber optic light combining assembly. Different wavelengths are needed to monitor the level of blood oxygenation in the patient. The assembly also contains a planar light guide mounted on the prism located in the housing member, which light guide contacts the patient's skin when the housing member is adhered to the patient's skin. The light guide controls the spacing between the prism and the patient's skin, and therefore controls the intensity of the area on the patient's skin which is illuminated by the laser light. The housing member contains a photodiode assembly, which detects the infrared light at a second location on the skin to determine light absorption. The photodiode assembly is preferably shielded from ambient electromagnetic interference (EMI) by an optically transparent EMI attenuating window. This rigid window placed over the photodiode also provides a planar interface between the assembly and the skin, improving optical coupling and stability as well as reducing the capacitive coupling between skin and the photodiode resulting in further EMI attenuation. The housing may be associated with a disposable sterile hydrogel coated adhesive envelope, or pad, which when applied to the patient's skin will adhere the housing to the patient's skin. The transducer assembly will thus be reusable, and skin-contacting part of the device, i.e., the envelope or pad can be discarded after a single use. The assembly also includes a laser safety interlock means, which is operable to turn off the laser light output in the event that the assembly accidentally becomes detached from the patient's skin.
Owner:EDWARDS LIFESCIENCES CORP

Homing guidance transportation robot

The invention discloses a homing guidance transportation robot. The homing guidance transportation robot comprises a control element which is arranged inside a vehicle body, a traveling mechanism which is connected with the control element, a movement mechanism, a magnetic navigation mechanism, a collision avoidance mechanism and an automatic charging mechanism. The traveling mechanism comprises wheels arranged on the bottom of the vehicle body. The movement mechanism comprises a material carrying roller, a lifting mechanism and a horizontal moving mechanism. The magnetic navigation mechanism comprises a magnetic track arranged on the ground and a navigation sensor which is arranged on the bottom of the vehicle body. The collision avoidance mechanism comprises laser safety protection devices arranged below two ends of the vehicle body and contact-type protective device arranged on the periphery below the vehicle body. The automatic charging mechanism comprises a battery set which is arranged in the vehicle body, a charging connection device connected with the battery set and an electric quantity sensor. The control element is controlled by a remote terminal and exchanges information with the remote terminal through a wireless local area network. According to the homing guidance transportation robot, full automation of work is achieved, and safety and reliability are guaranteed.
Owner:NANTONG GAOYE HEAVY IND CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products