Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

118 results about "Peptide substrate" patented technology

Peptide Substrates are compounds which are acted upon by various enzymes and therefore affect many physiological systems. Peptide Substrates are used in many areas of biological and medical research. Our popular products such as PKC substrate GS, PKC substrate GS, and Bradykinin triacetate are typically available for immediate shipment.

Inhibitors of memapsin 2 and use thereof

Methods for the production of purified, catalytically active, recombinant memapsin 2 have been developed. The substrate and subsite specificity of the catalytically active enzyme have been determined. The substrate and subsite specificity information was used to design substrate analogs of the natural memapsin 2 substrate that can inhibit the function of memapsin 2. The substrate analogs are based on peptide sequences, shown to be related to the natural peptide substrates for memapsin 2. The substrate analogs contain at least one analog of an amide bond which is not capable of being cleaved by memapsin 2. Processes for the synthesis of two substrate analogues including isosteres at the sites of the critical amino acid residues were developed and the substrate analogues, OMR99-1 and OM99-2, were synthesized. OM99-2 is based on an octapeptide Glu-Val-Asn-Leu-Ala-Ala-Glu-Phe (SEQ ID NO:28) with the Leu-Ala peptide bond substituted by a transition-state isostere hydroxyethylene group (FIG. 1). The inhibition constant of OM99-2 is 1.6×10−9 M against recombinant pro-memapsin 2. Crystallography of memapsin 2 bound to this inhibitor was used to determine the three dimensional structure of the protein, as well as the importance of the various residues in binding. This information can be used by those skilled in the art to design new inhibitors, using commercially available software programs and techniques familiar to those in organic chemistry and enzymology, to design new inhibitors to memapsin 2, useful in diagnostics and for the treatment and / or prevention of Alzheimer's disease.
Owner:THE BOARD OF TRUSTEES OF THE UNIV OF ILLINOIS +1

Matrix metalloproteinase-2 specific multi-modality molecular image probe and preparation method and application in preparation of tumor imaging agent thereof

The invention discloses a matrix metalloproteinase-2 specific multi-modality molecular image probe preparation method and application thereof. The preparation method comprises the following steps: 1)preparing peptide substrates for matrix metalloproteinase-2(MMP-2) specific identification; 2) modifying near infrared fluorescent dye on peptide substrate; 3) modifying fluorescent quenching group onpeptide substrate; 4) connecting different molecular weight PEG or tumor targeting group RGD on peptide substrate modified with near infrared fluorescent dye and fluorescent quenching group; 5) labeling the nuclide on the above modified peptide substrate side chain tyrosine. Compared with the prior art, the matrix metalloproteinase-2 specific multi-modality molecular image probe preparation method has the advantages that: 1) by utilizing the specificity and responsiveness of the MMP-2 protease by the probe, so that the probe is selectively enriched at the tumor site so as to improve the targeting property of the probe to the tumor; 2) performing multi-modality imaging in a living body tumor by using advanced molecular imaging technology such as optical, opto-acoustic, SPECT and the like,improving the sensitivity and accuracy of tumor imaging, and finally achieving accurate positioning of the tumor; 3) providing a new train of thought and method for early diagnosis, process research and prognosis evaluation of tumor.
Owner:苏州智影特生物医药技术有限公司

Screening methods for protein kinase b inhibitors employing virtual docking approaches and compounds and compositions discovered thereby

The present invention describes an improved method for screening compounds for activity in inhibiting the enzymatic activity of Akt1 protein kinase, also known as Protein Kinase B, an enzyme that is believed to play a key role in the inhibition of apoptosis and thus in the etiology of cancer and other conditions, including neurodegenerative diseases. In general, the method comprises: (1) providing a plurality of compounds suspected of having Akt1 kinase inhibitory activity; (2) modeling the docking of each of the plurality of the compounds with a target binding site derived from the crystal structure of a ternary complex involving Akt1, a nonhydrolyzable ATP analogue, and a peptide substrate derived from a physiological AKT substrate such that the protein active site is defined including those residues within a defined distance from the nonhydrolyzable ATP analogue; (3) ranking the docked compounds by goodness of fit; (4) further selecting compounds from compounds high ranked by goodness of fit in docking by using one or more screening criteria; (5) optionally, visually analyzing structures of compounds selected in step (4) to remove any compounds with improbable docking geometry; and (6) experimentally testing the selected compounds from step (4) or step (5), if step (5) is performed, to determine their inhibitory activity against Akt1 in order to select compounds with Akt1 inhibitory activity. The invention also encompasses pharmaceutical compositions including compounds whose inhibitory activity against Akt1 is discovered by the screening method, as well as methods of use of the pharmaceutical compositions to treat cancer and other conditions.
Owner:BURNHAM INST FOR MEDICAL RES

Methods for glyco-engineering plant cells for controlled human o-glycosylation

This invention discloses the development of a novel platform for recombinant production of bioactive glycoproteins and cancer specific vaccines in plants. Plants and plant cell cultures have been humanized with respect to human mucin-type protein O-glycosylation. A panel of plant cell factories for production of recombinant glycoproteins with designed human O-glycosylation, including an improved cancer vaccine candidate, has been developed. The platform provides basis for i) production of an essentially unlimited array of O-glycosylated human glycoprotein therapeutics, such as human interferon α2B and podoplanin, and ii) for further engineering of additional cancer specific O-glycans on glycoproteins of therapeutical value. Currently, mammalian cells are required for human O-glycosylation, but plants offer a unique cell platform for engineering O-glycosylation since they do not perform human type O-glycosylation. Introduction of O-glycosylation into plant cells requires i) that wild-type plant cells do not modify the target peptide substrates and ii) that the appropriate enzymes and substrates are introduced into of plant cells such that O-glycosylation in the secretory pathway proceed and the glycosylated peptide substrates are preferentially exported to the exterior of the cell or accumulated in the cell. In this invention i) the integrity of transiently and stably expressed ‘mucin’ type target peptides in plants cells has been determined and ii) mucin-type O-glycosylation has been established in plants by transient and stable introduction of a Pseudomonas aeruginosa C4-epimerase, the human polypeptide GalNAc-transferases T2 and T4 (GalNAc-T2 and T4) and various human target peptides or proteins. In the present invention GalNAc-T2 and -T4 have been used to produce a Tn cancer glycoform of MUC1.
Owner:YANG ZHANG +7
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products