Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

47 results about "Crystal anisotropy" patented technology

Anisotropic crystals are used for many optical applications, such as polarizers, optical waveplates, wedges etc. Wood and composites are the common examples of anisotropic materials. In plant cells, the interior part or cytoplasm is considered as anisotropic due to the presence of intracellular organelles.

Optical element module and method of manufacturing the same

A method of manufacturing an optical element module 1 in which an optical element 8 and a semiconductor circuit element 9 are mounted on one surface of a silicon substrate 2, a mirror surface 2a inclined at approximately 45 degrees is formed on the other surface, and an optical fiber 7 facing the mirror surface is disposed in a V groove formed along the other surface, the method of manufacturing includes the steps of forming the mirror surface 2a and V-shaped side surfaces of the V groove simultaneously by first crystal anisotropic etching on the other surface, and forming an attaching surface 2b substantially perpendicular to the one surface and the other surface, which is formed at an end side of the V groove, and for attaching an end of the optical fiber 7, by second crystal anisotropic etching in a crystal plane orientation different from that of the first crystal anisotropic etching. Thereby, it is possible to realize an optical element module including an optical element that receives light or emits light, a semiconductor circuit element, and an optical fiber optically connected to the optical element, the optical element module highly-functionally performs an optical connection between the optical element and the optical fiber, and realize a method of efficiently manufacturing the optical element module.
Owner:HAMAMATSU PHOTONICS KK

Charged particle beam apparatus and methods for capturing images using the same

The present invention provides a charged particle beam apparatus used to measure micro-dimensions (CD value) of a semiconductor apparatus or the like which captures images for measurement. For the present invention, a sample for calibration, on which a plurality of polyhedral structural objects with known angles on surfaces produced by the crystal anisotropic etching technology are arranged in a viewing field, is used. A beam landing angle at each position within a viewing field is calculated based on geometric deformation on an image of each polyhedral structural object. Beam control parameters for equalizing the beam landing angle at each position within the viewing field are pre-registered. The registered beam control parameters are applied according to the position of the pattern to be measured within the viewing field when performing dimensional measurement. Accordingly, the present invention provides methods for reducing the variation in the CD value caused by the variation in the electron beam landing angle with respect to the sample with an equal beam landing angle and methods for reducing the instrumental error caused by the difference in the electron beam landing angle between apparatuses.
Owner:HITACHI HIGH-TECH CORP

Laser device and method for adjusting and controlling passively Q-switched laser output characteristics through Cr<4>+: YAG crystal anisotropy characteristics

Disclosed are a laser device and method for adjusting and controlling passively Q-switched laser output characteristics through Cr<4>+: YAG crystal anisotropy characteristics. The device comprises a semiconductor laser pumping source (1), a first aspherical lens (2), a second aspherical lens (3), a laser front cavity mirror (4), a laser crystal (5), an adjusting frame (7) with a rotary adjusting function, a Cr<4>+: YAG crystal (8) and a laser output mirror (9), wherein the semiconductor laser pumping source (1), the first aspherical lens (2), the second aspherical lens (3), the laser front cavity mirror (4), the laser crystal (5), the adjusting frame (7), the Cr<4>+: YAG crystal (8) and the laser output mirror (9) are arranged in sequence in the beam propagation direction. The method comprises the first step of constructing Cr<4>+: YAG crystal passively Q-switched laser output, and the second step of rotating and adjusting the adjusting frame to achieve anisotropy changes of Cr<4>+: YAG crystal energy transmittance in a laser resonance cavity, and finally adjusting and controlling the passively Q-switched laser output performance. According to the device and method, the passively Q-switched laser output performance is controlled through the Cr<4>+: YAG crystal anisotropy energy transmittance, and the method is simple and easy to implement.
Owner:HARBIN INST OF TECH

Method of preparing Cr<3+>-doped CoFe2O4 high-density magnetic-recording material

ActiveCN105129868AImprove coercive forceThe method is economical and convenientCobalt compoundsMagnetic mediaPeak value
A method of preparing a Cr<3+>-doped CoFe2O4 high-density magnetic-recording material belongs to the technical field of preparation of magnetic-recording materials. In the method, Cr<3+> is doped into metal oxides through a hydrothermal method, so that size of product particles is changed. In a spinel ferrite structure, iron ions are subjected to crystal field to cause quenching of orbital angular momentum, which leads to low magnetic crystal anisotropy and a low coercive force. As a result, by means of the Cr<3+>, of which the orbital angular momentum is not quenched, for doping the CoFe2O4, the CoFe2O4 is improved in magnetic crystal anisotropy. By means of the hydrothermal method, the Cr<3+> is doped with the CoFe2O4, so that two methods of size controlling and element doping are combined, thereby further increasing the coercive force of the magnetic medium. During the process of doping the Cr<3+>, with increase of the doping amount of the Cr<3+>, the product is gradually increased in magnetic crystal anisotropy, and meanwhile, the size of the particles is gradually changed, and when the size is in single-domain critical size range (about 40-100 nm), the product reaches a peak value in the coercive force. The method can further increase the coercive force of the magnetic medium, and is economical and convenient and is easy to popularize.
Owner:DALIAN UNIV OF TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products