Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

926results about How to "Effective penetration" patented technology

Lead-free glass powder, preparation method thereof, silver paste containing glass powder and crystal silicon solar cell manufactured by using silver paste

The invention discloses lead-free glass powder, a preparation method thereof, silver paste containing the glass powder and a crystal silicon solar cell manufactured by using the silver paste. The lead-free glass powder comprises the following components in percentage by weight: 20-30 percent of SiO2, 2-15 percent of B2O3, 40-70 percent of Bi2O3, 1-10 percent of ZnO, 1-10 percent of Al2O3 and 1-5 percent of BaO. The preparation method comprises the following steps of: (1) weighing the components for preparing a mixture; (2) putting the mixture into a crucible for melting; (3) performing water quenching on molten glass; (4) drying; (5) smashing the mixture into powder by planetary ball milling; and (6) screening. The needed silver paste is prepared from the lead-free glass powder, silver powder, an additive and an organic carrier. A solar panel front face electrode and a grid line are manufactured by performing screen printing and sintering on conductive silver paste on a cell substrate, so that the needed solar cell is obtained. The lead-free glass powder has low melting temperature, low softening temperature and low linear expansion factor.
Owner:湖南威能新材料科技有限公司

Method for particulate introduction for metal furnaces

A method and an apparatus for advantageously introducing a flame, a high velocity oxidizing gas, and a high velocity particulate flow into a furnace for metal melting, refining and processing, for example, steel making in an electric arc furnace. The steel making process of an electric arc furnace is made more efficient by shortening the time of the scrap melting phase, introducing a more effective high velocity oxidizing gas stream into the process sooner to decarburize the melted metal and introducing a more effective particulate injection to reduce FeO, form or foam slag and / or recarburize. Improved efficiency is obtained by mounting a fixed burner / lance and carbon injector lower and closer to the hot face of the furnace refractory at an effective injection angle. This mounting technique shortens the distance that the flame of the burner has to melt through scrap to clear a path to the molten metal, and shortens the distance the high velocity oxygen and high velocity particulates travel to the slag-metal interface. One method includes supplying a plurality of oxidizing reaction zones with the high velocity oxidizing gas to decarburize the melted metal and a plurality of particulate reaction zones with high velocity flows of particulate carbon for reducing FeO and / or forming foamy slag. The particulate reaction zones are located on the downstream side of the oxidizing gas reaction zones so as to minimize any effect of the reduction reaction on the decarburization reaction and to recover a part of the hot FeO produced in the oxidizing gas reaction zones.
Owner:PROCESS TECH INT
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products