Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

647 results about "Velocity vector" patented technology

A velocity vector represents the rate of change of the position of an object. The magnitude of a velocity vector gives the speed of an object while the vector direction gives its direction. Velocity vectors can be added or subtracted according to the principles of vector addition.

Speed/positional mode translations

Gestures for converting from a position control mode to a motion continuation mode are disclosed. A position control mode can be invoked when the user simultaneously places two or more fingers upon a sensor panel. The fingers can then be moved around to effect position control. A motion continuation mode can be invoked when one or more fingers are lifted off (but at least one finger remains in contact with the sensor panel). If the motion continuation mode is invoked, a virtual control ring can be generated, and scrolling of the viewable area or dragging of the cursor or object can continue in a particular direction specified by a velocity vector pointed in the direction of finger movement at the time the motion continuation mode is invoked, and having a magnitude proportional to the velocity of the finger at the time the motion continuation mode was invoked.
Owner:APPLE INC

Method and system for providing warnings concerning an imminent vehicular collision

Method for transmitting a warning signal to a driver of a driven vehicle regarding an impending collision with a moving and / or stationary object in the vicinity of the driven vehicle. The method comprises the following steps of providing the driven vehicle with means for obtaining updated data regarding, position, velocity vector and predicted moving path of the objects; selecting a series of one or more time horizons having decreasing or increasing duration; for the longest of the selected time horizons: generating a linear velocity object (LVO) and / or non-linear velocity object (NLVO) of each of the objects; selecting a sampling time interval Δt, during which an LVO and / or NLVO is generated; determining a range of feasible velocity vector changes for the driven vehicle that are attainable within a performance time interval ΔT; repeatedly providing the driver, after each Δt, with information regarding feasible velocity vector changes for the performance time interval; sensing, estimating or assuming dynamic changes parameters representing the movement of the driven vehicle within the performance time interval, and whenever required, generating a warning signal with an escalating severity level that reflects the relative imminence of collision with the objects and that corresponds to the longest time horizon; repeating the steps above, while each time generating an updated LVO and / or NLVO for a subsequent sampling time interval, until reaching another selected time horizon which is shorter than a previously selected time horizon and another selected time horizon, until collision is unavoidable.
Owner:SHILLER ZVI

Systems, Methods and Devices for Collecting Data at Remote Oil and Natural Gas Sites

Systems, methods and devices are provided for detecting airborne particulates and / or gases at remote oil and natural gas sites, such as wells, and / or processing and refinery plants. One such system comprises an unmanned aerial vehicle (UAV), such as a drone aircraft, configured for aerial dispatch to the remote site and wireless connection to an external processor, cloud apparatus or the like. The UAV includes one or more on-board sensors configured to detect airborne particulates or gases, such as methane gas, hydrogen sulfide, hydrocarbons, weather conditions, ground-based elements or compounds or the like. The on-board sensors may comprise light transmitters, such as lasers, configured for transmitting light or laser pulses into the ambient environment around the remote site and detecting backscatter to detect the concentration and / or velocity vector(s) of the airborne particulates or gases. The UAV is further configured to wirelessly transmit data associated with the airborne particulates or gases to the external processor or cloud apparatus in real-time.
Owner:OIL & GAS IT LLC

Apparatus and method for the automatic positioning of information access points

An apparatus and method for the automatic positioning of information access points. An electronically connected individual (ECI) passes within range of a first information access point (IAP) and obtains location information. Subsequently, the ECI passes within range of a second IAP which hitherto does not have any location information. The location for this second IAP can be estimated based on the location obtained from the first IAP, elapsed time, and the individual's estimated velocity vector. As the ECI passes by a third IAP, the location, elapsed time, and estimated velocity vector data corresponding to the third IAP can be used to refine the location of the second IAP. Over time, the location of the second IAP can be successively refined as ECI's move between IAP's.
Owner:HEWLETT PACKARD DEV CO LP

Method and systems using prediction of outcome for launched objects

Each golfer (1-3) on a golf range (4) has an individual display (12-14) showing at least a predicted outcome of each of his / her shots, and a launch-analyser (6-8) to measure velocity vectors of the ball and / or club at strike for central-computation (9) of the prediction. Vibration and piezo-cable sensors (54,55;68,69) at instrumented targets (5;41-45,47) distributed throughout the range (4), detect the presence of balls arriving in their respective locations for matching with launched balls using the computed predictions and probability; active or passive radio-frequency identification and location of balls may also be used. Where a match is found, error between predicted and actual outcome is applied to adaptive correction of the prediction-computing process, and the actual outcome is displayed to the golfer instead of the prediction. Ball and / or club velocity vectors, and ball spin, at launch are measured from light changes occurring in detection planes (96,97;105;114-117;134;144-146) defined by slit apertures (94,95;104), and resulting from retro-reflection from ball (91;110;131) and / or club (130).
Owner:LINDSAY LTD

Method and system for providing warnings concerning an imminent vehicular collision

ActiveUS20070080825A1Optimal collision mitigating maneuverPedestrian/occupant safety arrangementAnti-collision systemsTime rangeSeverity level
Method for transmitting a warning signal to a driver of a driven vehicle regarding an impending collision with a moving and / or stationary object in the vicinity of the driven vehicle. The method comprises the following steps of providing the driven vehicle with means for obtaining updated data regarding, position, velocity vector and predicted moving path of the objects; selecting a series of one or more time horizons having decreasing or increasing duration; for the longest of the selected time horizons: generating a linear velocity object (LVO) and / or non-linear velocity object (NLVO) of each of the objects; selecting a sampling time interval Δt, during which an LVO and / or NLVO is generated; determining a range of feasible velocity vector changes for the driven vehicle that are attainable within a performance time interval ΔT; repeatedly providing the driver, after each Δt, with information regarding feasible velocity vector changes for the performance time interval; sensing, estimating or assuming dynamic changes parameters representing the movement of the driven vehicle within the performance time interval, and whenever required, generating a warning signal with an escalating severity level that reflects the relative imminence of collision with the objects and that corresponds to the longest time horizon; repeating the steps above, while each time generating an updated LVO and / or NLVO for a subsequent sampling time interval, until reaching another selected time horizon which is shorter than a previously selected time horizon and another selected time horizon, until collision is unavoidable.
Owner:SHILLER ZVI

Enhanced flight control systems and methods for a jet powered tri-mode aircraft

A method of stabilizing a jet-powered tri-mode aircraft as the aircraft travels in a helicopter mode, a compound mode, and a fixed-wing mode is disclosed. The method includes receiving a plurality of velocity vector component values and velocity vector commands derived from either (1) a number of pilot operated controllers or (2) a commanded array of waypoints, which are used for fully automated flights, and a rotor speed reference value, which is decreased with increasing forward speed to unload the rotor, thereby permitting conditions for stopping the rotor in flight. Stabilization of the commanded velocity vector is achieved in all modes of flight using blended combinations of rotor swashplate controls and aerodynamic controls such as elevons, canards, rudders, and a horizontal tail. Stabilization to the commanded velocity vector includes a plurality of control constraints applied to the pilot stick controllers that prevent penetration of envelope limits.
Owner:THE BOEING CO

Echo particle image velocity (EPIV) and echo particle tracking velocimetry (EPTV) system and method

A system and method for detecting fluid flow. An ultrasound system comprises a signal generator providing ultrasound firing sequences applied to a linear array transducer. The transducer generating ultrasound energy applied to the fluid flow. A pre-processor comprises a digital RF data acquisition component receiving an RF signal from the transducer of back-scattered ultrasound energy and a B-mode image generation component for reconstructing images form the RF data. A post-processor executes particle image velocity (PIV) algorithms for generating velocity vectors indicative of the fluid flow. The sequences may have triangular waveforms.
Owner:UNIV OF COLORADO THE REGENTS OF

Method and system for navigation using GPS velocity vector

A navigation device includes a computer platform that includes a global positioning system (GPS) receiver operable to acquire and track a GPS signal, a processor assembly, and a memory. The memory includes at least one of last recorded Ephemeris and Almanac information, and a GPS velocity vector determination module operable to generate a velocity vector output in the absence of current Ephemeris based upon the tracked GPS signal and the last recorded GPS information. A method of vehicle navigation in the absence of current Ephemeris includes acquiring and tracking a GPS signal, retrieving from a memory a last recorded location of a vehicle, setting a dead reckoning startup location equal to the last recorded location, retrieving from a memory at least one of a last recorded Ephemeris and Almanac, determining a current velocity vector and determining a current location based upon the velocity vector and the dead reckoning startup location.
Owner:MITAC INT CORP

Fall detection using sensor fusion

A method and system for fall detection using sensor fusion are disclosed. In a first aspect, the method comprises in response to any of first and second acceleration magnitude thresholds being satisfied, determining whether a height difference before and after impact of a fall satisfies a threshold and whether an angle threshold between an acceleration vector and a calibration vector is satisfied. In a second aspect, the system comprises a processing system and an application coupled to the processing system, wherein the application carries out the steps of the method.
Owner:VITAL CONNECT

UAV (unmanned aerial vehicle) formation control method and device based on artificial potential field

The invention relates to a UAV (unmanned aerial vehicle) formation control method and device based on an artificial potential field. The method is characterized by converting a formation coordinate system to a global NED coordinate system, and determining an ideal position of each UAV in the formation in the global NED coordinate system; according to a preset target position of the UAV and the ideal position of the UAV, determining gravity applied to the UAV by the preset target position; according to velocity vector of the UAV and velocity vector of a barrier corresponding to the UAV, determining repulsion force applied to the UAV by the barrier; according to the gravity applied to the UAV and the repulsion force applied to the UAV by all barriers, determining resultant force applied to the UAV; and according to the resultant force applied to the UAV and flight status information of the UAV and wing planes around, determining movement trend of the UAV to enable a controller to carry out flight control on the UAV formation according to a motion model of the UAV.
Owner:BEIHANG UNIV

Obstacle detection apparatus and a method therefor

An obstacle detection apparatus includes an image input unit inputting a image sequence captured by an image sensor, a velocity detector deriving velocity vectors representing motions of a to-be-detected point and a to-be-compared point on each image of the image sequence, a predictive velocity vector calculator calculating a predictive velocity vector of the to-be-detected point using a detected velocity vector of the to-be-compared point, an obstacle detector detecting the to-be-detected point as a point on the obstacle when a horizontal component of a detected velocity vector of the to-be-detected point is larger than a horizontal component of the predictive velocity vector by a given threshold, and an obstacle information output unit outputting information on the to-be-detected point detected as the obstacle.
Owner:TOSHIBA ELECTRONICS DEVICES & STORAGE CORPORARTION +1

Program, information storage medium, and game device

A game device calculates a shift angle A based on a magnitude of a velocity vector S of a moving object MO and inclination information that indicates an inclination of a controller, calculates a direction D of the moving object on a slope based on a direction of the velocity vector S of the moving object and the shift angle A, calculates a first force vector P1 in the direction intersecting at right angles on the slope with the direction D of the moving object on the slope based on the inclination information, calculates a second force vector P2 based on a slope angle of the slope, calculates a resultant force vector PS by combining the first force vector P1 and the second force vector P2, updates the velocity vector S of the moving object based on the resultant force vector PS, and updates a position of the moving object MO based on the updated velocity vector.
Owner:BANDAI NAMCO ENTERTAINMENT INC

Coronary artery motion modeling

A method for tracking coronary artery motion includes constructing (11) a centerline model of a vascular structure in a base phase image in a sequence of 2D images of coronary arteries acquired over a cardiac phase, computing (12), for each pixel in a region-of-interest in each subsequent image, a velocity vector that represent a change in position between the subsequent image and base phase image, calculating (13) positions of control points in each phase using the velocity vectors, and applying (14) PCA to a P×2N data matrix XT constructed from position vectors (x, y) of N centerline control points for P phases to identify d eigenvectors corresponding to the largest eigenvalues of XXT to obtain a d-dimensional linear motion model {circumflex over (α)}p, in which a centerline model for a new image at phase p+1 is estimated by adding {circumflex over (α)}p to each centerline control point of a previous frame at phase p.
Owner:SIEMENS HEALTHCARE GMBH

Position calculating system and haulage vehicle

Disclosed is a position calculating system for a haulage vehicle including wheels and a body frame mounted on the wheels. The system includes an attitude detection sensor fixed on the body frame, a wheel rotational speed sensor, a loading status information acquiring unit, a correction amount setting unit, a velocity vector calculating unit, and a position calculating unit. The loading status information acquiring unit acquires loading status information indicating whether the body frame is in a loaded state or in an unloaded state . The correction amount setting unit calculates, based on the attitude information, a correction amount required for bringing detection axes in the loaded state into coincidence with corresponding detection axes in the unloaded state. The velocity vector calculating unit calculates the velocity vector of the haulage vehicle. The position calpulating unit calculates a position of the haulage vehicle by using the velocity vector.
Owner:NIHON KENKI CO LTD

Location defined control of cellular system

A system and method for controlling operations in a cellular system is disclosed. A serving cell or the mobile telephone switching office (MTSO) determines that a portable wireless device operating in a serving cell needs to be handed off (a “handoff”). The position of the portable wireless device is determined. The position may be determined based on any of a variety of localization techniques, such as time difference of arrival (TDOA), angle of arrival (AOA), location pattern matching (LPM), global positioning system (GPS), or other localization techniques. A target cell is selected based on the position of the portable wireless device. Generally, the target cell is selected as the cell that is closest to the portable wireless device. Factors such as a position vector and / or a velocity vector may be assessed in selecting the target cell. Based on the target cell that is selected, the MTSO assigns the portable wireless device to the target cell and the transmission is handed off to the new cell.
Owner:BELLSOUTH INTPROP COR

Novel imaging method in agile satellite maneuvering

ActiveCN103983254AExtended Imaging TasksGuaranteed Image Processing RequirementsPicture taking arrangementsSpecial data processing applicationsNatural satelliteOn board
The invention relates to a novel imaging method in agile satellite maneuvering, which is capable of realizing imaging of satellite during a posture adjustment process. The method comprises the following steps: according to geographic latitude and longitude of on-board orbit forecast data and imaging object point, a triaxial attitude angle directional target imaging start point of satellite is arranged; a roll angle and a pitch angle are obtained through a modeling algorithm for determining the satellite optical axis directional target imaging point; establishing a CCD image plane in a satellite model, performing calculation to obtain image motion velocity vector and a drift angle through projection calculating, and yaw angle of the satellite is controlled for correcting the drift angle, calculating the image motion velocity vector to obtain TDICCD integration time for image motion compensation, and satisfying the image processing requirement of imaging in maneuvering. The design method is capable of using in a triaxial attitude maneuvering process of the satellite for starting optical payload for a dynamic imaging technology for imaging, so that target directional requirement and image processing requirement during an imaging process can be realized.
Owner:AEROSPACE DONGFANGHONG SATELLITE

Method and apparatus for estimating the velocity vector of multiple vehicles on non-level and curved roads using a single camera

A method and an apparatus is provided for determining the velocity vector, speed, and direction of moving vehicles traveling on roadways which change elevation and have curves. A camera mounted above a roadway observes at least one vehicles traveling in different directions on different roads. Each pixel in the two-dimensional optical image is mapped into a three-dimensional real world location to enable the moving vehicles to be analyzed in the three-dimensional real world as they travel on roads, which may change elevation and may have curves. The estimated vehicle velocities may be displayed on an image near the moving vehicle. Individual images with vehicle velocities may be posted on an Internet site. The sequence of optical images, or streaming video, with the displayed vehicle velocities may also be used for television news programs that show traffic moving on the roadways.
Owner:WILLIAMS CHRISTOPHER REED

Systems, Devices, Components and Methods for Detecting the Locations of Sources of Cardiac Rhythm Disorders in a Patient's Heart

Disclosed are various examples and embodiments of systems, devices, components and methods configured to detect a location of a source of at least one cardiac rhythm disorder in a patient's heart. In some embodiments, electrogram signals are acquired from inside a patient's heart, and subsequently normalized, adjusted and / or filtered, followed by generating a two-dimensional spatial map, grid or representation of the electrode positions, processing the amplitude-adjusted and filtered electrogram signals to generate a plurality of three-dimensional electrogram surfaces corresponding at least partially to the 2D map, one surface being generated for each or selected discrete times, and processing the plurality of three-dimensional electrogram surfaces through time to generate a velocity vector map corresponding at least partially to the 2D map. The resulting velocity vector map is configured to reveal the location of the source of the at least one cardiac rhythm disorder, which may be, by way of example, an active rotor in a patient's myocardium and atrium.
Owner:ABLACON INC

Estimation and display for vector doppler imaging using plane wave transmissions

Vector Doppler Imaging (VDI) improves on conventional Color Doppler Imaging (CDI) by giving speed and direction of blood flow at each pixel of a display generated by a computing system. Multiple angles of Plane wave transmissions (PWT) via an ultrasound transducer conveniently give projected Doppler measurements over a wide field of view, providing enough angular diversity to identify velocity vectors in a short time window while capturing transitory flow dynamics. A fast, aliasing-resistant velocity vector estimator for PWT is presented, and VDI imaging of a carotid artery with a 5 MHz linear array is shown using a novel synthetic particle flow visualization method.
Owner:VERASONICS

Pressure exchanger

A pressure exchanger for transferring pressure energy from a relatively high-pressure fluid stream to another relatively low-pressure fluid stream is provided. A ducted rotor is positioned on a central axle between two end covers inside a pressure vessel with a coaxial inlet and outlet pair that is in communication with a pair of low pressure ports having inclination forming an inlet tangential velocity vector in the direction of rotor rotation and an outlet tangential velocity vector in opposite direction imparting a rotational momentum on rotor. A pair of high-pressure ports is adapted for flow without inclination and imparts no momentum to rotor and flow can be varied without impacting the rotor's RPM. The end covers have a sloped surface following a flat sealing area that increases the clearance in the direction of rotation causing increased outflow during depressurization and lower duct pressure before duct is exposed to low pressure port and furthermore causing increased inflow during the pressurization phase before duct is exposed to the high pressure port, which will dissipate pressure energy as opposed to producing cavitation or pressure waves with result wear and noise.
Owner:ISOBARIC STRATEGIES INC

Methods and Techniques for Creating and Visualizing Thermal Zones

Techniques for using air flow analysis to model thermal zones are provided. In one aspect, a method for modeling thermal zones in a space, e.g., in a data center, includes the following steps. A graphical representation of the space is provided. At least one domain is defined in the space for modeling. A mesh is created in the domain by sub-dividing the domain into a set of discrete sub-domains that interconnect a plurality of nodes. Air flow sources and sinks are identified in the domain. Air flow measurements are obtained from one or more of the air flow sources and sinks. An air flow velocity vector at a center of each sub-domain is determined using the air flow measurements obtained from the air flow sources and sinks. Each velocity vector is traced to one of the air flow sources, wherein a combination of the traces to a given one of the air flow sources represents a thermal zone in the space.
Owner:GLOBALFOUNDRIES US INC

Sports simulator and simulation method

A sports simulator calculates spin of a sports object using image analysis. A velocity vector is also calculated. These are combined to produce a predicted future trajectory of the sports object. In one embodiment, the sports object is a golf ball and the sports simulator simulates golf.
Owner:FULL SWING GOLF

Atmospheric measurement system

An apparatus providing for simultaneous measurement of the wind upstream and downstream of a wind turbine uses either a single LIDAR beam split into two beams, each focused upstream or downstream of the windmill, or a multiple beam LIDAR with a first beam source aimed toward the upstream direction of the wind and a second beam source aimed at the downstream direction after the wind has passed through the wind turbine. The apparatus may also use LIDAR to measure wind direction and speed by making measurements along slightly different lines of sight, or by pointing the LIDAR in different directions. Two lines of sight allow measuring wind direction in the plane defined by the two lines of sight. Three non-coplanar lines of sight provide the information necessary to determine a full 3-dimensional wind velocity vector. Further, LIDAR may also be used to measure wind speed by estimating the wind velocity using inputs from both aerosol and molecular components.
Owner:MICHIGAN AEROSPACE

Measuring wind vectors remotely using airborne radar

Airborne meteorological radars and related networks and models. In one embodiment a network for creating a meteorological model includes a mobile sensing node and a modeling node. The sensing node includes a meteorological RADAR that senses the wind velocity. Data from the meteorological RADAR regarding the wind velocity is received by a processor of the modeling node which determines a model of the wind from the wind velocity. The modeling node combines data from a second sampling node with the data from the first sampling node to create a resultant wind velocity vector. Preferably, the modeling node and the sampling node(s) communicate over an airborne WAN. Another embodiment provides a method of measuring the wind velocity. The method includes steering an RADAR signal out of the plane of travel of the mobile platform. The wind velocity is measured using a return of the RADAR signal.
Owner:THE BOEING CO
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products