Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

47results about How to "Large amount of energy" patented technology

Fuel efficient vehicle tire having a variable footprint and low rolling resistance

A tire for vehicles offering low rolling resistance wherein the ground-contact surface area is variable as a portion of the tread part can be retracted and/or extended using pneumatic, mechanical or hydraulic force to withdraw from, or come into contact with the road surface before, during or after operation permitting more efficient operation wherein the material used within the tread part that retains contact with the road may generally have a smaller internal friction loss than the material used in conventional tires and the rolling resistance is thereby reduced when the retractable portion of the tread is selectively withdrawn from contact with the road surface furthermore achieving a smaller ground-contact patch footprint. The achieved object of a tire with a lower rolling resistance yields improved fuel consumption efficiency. Improvements in exterior and interior noise levels and a reduced tendency to exhibit hydroplaning action are also attained with a variable groove volume to tread surface-contact ratio. Within one embodiment of the present invention, an automated microcomputer-based tire control system is disclosed useable to command the motion of the moveable tread portion of the said tire in response to various operational scenarios.
Owner:FIORE ROBERT ANGELO

Rotating multi-monolith bed movement system for removing co2 from the atmosphere

A system for removing carbon dioxide from a carbon dioxide laden gas mixture, the system comprising two groups of carbon dioxide removal structures, each removal structure within each group comprising a porous solid mass substrate supported on the structure and a sorbent that is capable of adsorbing or binding to carbon dioxide, to remove carbon dioxide from a gas mixture, the sorbent being supported upon the surfaces of the porous mass substrate solid; an endless loop support for each of the groups of the removal structures, the endless loop support being so arranged as to move the support structures of each group along a closed curve while being exposed to a stream of the gas mixture; and a sealable regeneration box at one location along each of the endless loop supports, in which, when a porous solid mass substrate is sealed in place therein, carbon dioxide adsorbed upon the sorbent is stripped from the sorbent and the sorbent regenerated; each removal structural supporting a porous substrate in a position to be exposed to a flow of carbon dioxide laden gas mixture so as to allow for the removal of CO2 from the gas mixture; the number of removal structures to the number of regeneration boxes being directly determined by the ratio of the time to adsorb CO2, from a base level to desired level on the sorbent, to the time to strip the CO2 from the desired level back to the base level.
Owner:GLOBAL THERMOSTAT OPERATIONS LLC

Joint source channel coding based on channel capacity using neural networks

A communication system for conveying information from an information source across a communications channel using a joint source channel coding autoencoder, comprising: an encoder neural network of the joint source channel coding autoencoder, the encoder neural network having: an input layer having input nodes corresponding to a sequence of source symbols Sm={S1, S2, . . . , Sm}, the Si, taking values in an alphabet S, received at the input layer from the information source as samples thereof, and a channel input layer coupled to the input layer through one or more neural network layers, the channel input layer having nodes usable to provide values for the Xi, of a channel input vector Xn={X1, X2, . . . , Xn}, the Xi, taking values from the available input signal alphabet X of the communications channel, the channel input vector Xn comprising a plurality of signal values Xp usable to reconstruct an information source, wherein the number p of the plurality of signal values Xp is smaller than the total number n of signal values of the channel input vector Xn, and wherein at least one of the remaining signal values of the channel input vector Xn is usable to increase the quality of the reconstructed information source, and wherein the encoder neural network is configured through training to be usable to map sequences of source symbols Sm received from the information source directly to a representation as a channel input vector Xn, usable to drive a transmitter to transmit a corresponding signal over the communications channel; a first decoder neural network and a second decoder neural network of the joint source channel coding autoencoder, each decoder neural network having: a channel output layer having nodes corresponding to a channel output vector Y received from a receiver receiving a signal corresponding to at least the plurality of signal values Xp of the channel input vector Xn transmitted by the transmitter and transformed by the communications channel, and an output layer coupled to the channel output layer through one or more neural network layers, having nodes matching those of the input layer of the encoder neural network, wherein the first decoder neural network is configured through training to map the representation of the source symbols as the channel output vector Y transformed by the communications channel to a reconstruction of the source symbols Ŝm output from the output layer of the joint source channel coding autoencoder, the reconstruction of the source symbols Ŝm being usable to reconstitute the information source; and wherein the number of signal values of the channel output vector Y received by the first decoder network is more than the number of signal values of the channel output vector Y received by the second decoder neural network.
Owner:IMPERIAL INNOVATIONS LTD

Rotating multi-monolith bed movement system for removing CO2 from the atmosphere

A system for removing carbon dioxide from a carbon dioxide laden gas mixture, the system comprising two groups of carbon dioxide removal structures, each removal structure within each group comprising a porous solid mass substrate supported on the structure and a sorbent that is capable of adsorbing or binding to carbon dioxide, to remove carbon dioxide from a gas mixture, the sorbent being supported upon the surfaces of the porous mass substrate solid; an endless loop support for each of the groups of the removal structures, the endless loop support being so arranged as to move the support structures of each group along a closed curve while being exposed to a stream of the gas mixture; and a sealable regeneration box at one location along each of the endless loop supports, in which, when a porous solid mass substrate is sealed in place therein, carbon dioxide adsorbed upon the sorbent is stripped from the sorbent and the sorbent regenerated; each removal structural supporting a porous substrate in a position to be exposed to a flow of carbon dioxide laden gas mixture so as to allow for the removal of CO2 from the gas mixture; the number of removal structures to the number of regeneration boxes being directly determined by the ratio of the time to adsorb CO2, from a base level to desired level on the sorbent, to the time to strip the CO2 from the desired level back to the base level.
Owner:GLOBAL THERMOSTAT OPERATIONS LLC

A Traveling Camera Apparatus for Surfing

The Traveling Camera Apparatus for Surfing is embodied to film and photograph a surfer in motion on a breaking wave. The Traveling Camera Apparatus for Surfing is intended to have a full range of motion with functionality in 6 degrees of freedom and with the ability to operate in and out of the water. The advent for such an apparatus is motivated by the advance of the surfing photography/videography industry. The economic feasibility of the invention is spawned by the advent of wavepools equipped with breaking wave making devices that impart to creating breaking waves for surfing in a controlled environment. In such a wavepool a surfer may travel an entire length of the wavepool as permitted by the propagation of the breaking wave. The Traveling Camera Apparatus for Surfing shall be designed to follow along side the subject and create a multitude of images not possible if the camera were stationary in the wavepool. Some popular and sought after vantage points in the surfing photography industry are obtained when the camera is located directly behind the surfer submerged in the breaking wave and directly adjacent to the surfer where the camera is actually submerged in the water body of the breaking wave. In order to film the motion the surfer over the entire duration of the breaking wave, these camera angles require that the camera actually travel a path across the pool similar to that of the surfer on the breaking wave.
Owner:ENJO JUSTIN
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products