Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

390 results about "Operational approach" patented technology

Operational approach. Operational approach is a description of the broad actions the force must take to transform current conditions into those desired at end state.

Binary translator with precise exception synchronization mechanism

A source computer system with one instruction set architecture (ISA) is configured to run on a target hardware system that has its own ISA, which may be the same as the source ISA. In cases where the source instructions cannot be executed directly on the target system, the invention provides binary translation system. During execution from binary translation, however, both synchronous and asynchronous exceptions may arise. Synchronous exceptions may be either transparent (requiring processing action wholly within the target computer system) or non-transparent (requiring processing that alters a visible state of the source system). Asynchronous exceptions may also be either transparent or non-transparent, in which case an action that alters a visible state of the computer system needs to be applied. The invention includes subsystems, and related methods of operation, for detecting the occurrence of all of these types of exceptions, to handle them, and to do so with precise reentry into the interrupted instruction stream; by “precise” is meant that the atomic execution of the source instructions is guaranteed, and that the application of actions, including those that originate from asynchronous exceptions, occurs at the latest at the completion of the current source instruction at the time of the request for the action. The binary translation and exception-handling subsystems are preferably included as components of a virtual machine monitor which is installed between the target hardware system and the source system, which is preferably a virtual machine.
Owner:VMWARE INC

Chromatic dispersion compensator (CDC) in a photonic integrated circuit (PIC) chip and method of operation

An optical equalizer / dispersion compensator (E / CDC) comprises an input / output for receiving a multiplexed channel signal comprising a plurality of channel signals of different wavelengths. An optical amplifier may be coupled to receive, as an input / output, the multiplexed channel signals which amplifier may be a semiconductor optical amplifier (SOA) or a gain clamped-semiconductor optical amplifier (GC-SOA). A variable optical attenuator (VOA) is coupled to the optical amplifier and a chromatic dispersion compensator (CDC) is coupled to the variable optical attenuator. A mirror or Faraday rotator mirror (FRM) is coupled to the chromatic dispersion compensator to reflect the multiplexed channel signal back through optical components comprising the chromatic dispersion compensator, the variable optical attenuator and the optical amplifier so that the multiplexed channel signal is corrected partially for equalization and chromatic dispersion compensation with respect to each pass through these optical components. The E / CDC components may be integrated in a photonic integrated circuit (PIC) chip. In several embodiments, a photonic integrated circuit (PIC) chip comprises an input into the chip that receives at least one channel signal having experienced chromatic dispersion, a chromatic dispersion compensator (CDC) that separates the at least one channel signal into separate wavelength components over a free spectral range (FSR) spanning only a signal channel width and subjects the wavelength components to a phase shift to change the wavelength group delay in the wavelength components and that recombines the wavelength components to reconstitute the at least one channel signal, and an output from the chip for the recombined at least one channel signal having reduced chromatic dispersion compared to the same channel signal received at the chip input. The CDC device may include a tuning section to vary the phase shift of wavelength components as they propagate through the device. Such a CDC device may include a Mach-Zehnder interferometer (MZI) or a cascaded group of Mach-Zehnder interferometers, or at least one arrayed waveguide grating (AWG) or at least one Echelle grating.
Owner:INFINERA CORP

Spray Gun with Low Emissions Technology

A spray gun, in one embodiment, is provided with a sensor configured to monitor distance between the spray gun and a target object, and a drive responsive to the sensor, wherein the drive is configured to control a fluid valve of the spray gun based on the distance. A retrofit kit, in another embodiment, is provided with a feedback-controlled system configured to change fluid flow of a spray gun in response to one or more sensed parameters indicative of condition of a target object, a relationship between the spray gun and the target object, or a combination thereof. A spray controller, in a further embodiment, is provided with a control configured to terminate or decrease fluid flow of a spray in response to a first spray stroke away from a target object, and configured to start, continue, or increase fluid flow of the spray in response to a second spray stroke toward the target object. In yet another embodiment, a method of operation is provided for controlling fluid flow in response to feedback associated with a target object. In addition, a tangible medium is provided with instructions stored on the tangible medium, wherein the instructions comprise code configured to terminate or decrease fluid flow of a spray if the spray is not directed toward a target object, and code configured to start, continue, or increase fluid flow of the spray if the spray is directed toward the target object.
Owner:ILLINOIS TOOL WORKS INC

Wind energy system and method of operation thereof

A method for operating a wind energy system is provided comprising the steps of setting the value of an operational parameter of the wind energy system, measuring a yield parameter of the wind energy system and measuring a condition parameter. Further, the method comprises the step of calculating an optimized value of the operational parameter based on historical data and the outcome of the measurements. The method further comprises the step of resetting the operational parameter to the optimized value of the operational parameter wherein the resetting is such that the yield parameter is optimized. Further, a wind energy system is provided having a sensor unit for measuring a yield parameter of the wind energy system, a sensor for measuring a condition parameter, an actuator for adjustment of at least one adjustable part of the wind energy system, and a self-learning controller. The self-learning controller is connected to the sensor unit and the actuator and receives measurement data from the sensor unit. The self-learning controller performs optimization calculations based on the measurement data and sends instruction signals to the actuator based on the outcome of the optimization calculations for the adjustment of the adjustable part of the wind energy system. The instruction signals are such that the yield parameter is optimized.
Owner:GENERAL ELECTRIC CO
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products