Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

424results about How to "Improve remanence" patented technology

R-T-B series permanent magnet material and preparation method and application thereof

The invention discloses an R-T-B series permanent magnet material and a preparation method and application thereof. The R-T-B series permanent magnet material comprises components of 29.5-33.0 wt.% ofR', N, B and Te, wherein the R' comprises R, Pr, Nd, the R is a rare earth element except Pr and Nd, the content of Pr is greater than or equal to 8.85 wt.%, a mass ratio of Nd to R' is less than 0.5, the N is greater than 0.05 wt.% and is not greater than 4.1 wt.%, the N is Ti, Zr or Nb, the B is 0.90-1.2wt.%, and the Fe is 62.0-68.0wt.%. The R-T-B series permanent magnet material is advantagedin that a sintered permanent magnet product with high coercive force and a stable temperature coefficient is prepared by adopting a formula with high Pr content, advantages of Pr can be exerted to themaximum extent by adopting the formula disclosed by the invention, and production cost is effectively reduced.
Owner:FUJIAN CHANGJIANG GOLDEN DRAGON RARE EARTH CO LTD

Preparation method of neodymium iron boron magnet

A preparation method of neodymium iron boron magnet is disclosed. The composition general formula of the magnet provided by the invention is R1R2FeMB, wherein R1 is at least one element selected from the group consisting of Nd, Pr, La, Ce, Sm, Sc, Y and Eu, having a content of 23 to 35 wt%; R2 is at least one element selected from the group consisting of Tb, Dy, Gd, and Ho, having a content of 0.1 to 5 wt%; M represents transition group metal with the exception of Fe, having the content of 0.01 to 5 wt%; B represents simple substance boron, having the content of 0.8 to 1.2 wt%; the balance isFe and the other inevitable impurities. The preparation method of neodymium iron boron magnet provided by the invention works in such a manner that: one or more elements in the R2 are plated to the surface of the magnet, the metal R2 is diffused into the interior of the magnet by primary high temperature heat treatment, and imbalance organization and internal stress brought by the high temperature treatment are eliminated through secondary low temperature tempering. Low temperature molten salt electrodeposition method is employed to plate films. The present invention is advantageous in greatly improving the production efficiency, reducing the dosage of the heavy rare earth during preparation process of magnet, saving rare earth resource, and obtaining high coercivity without reducing remanent magnetism and magnetic energy product of a magnet.
Owner:GRIREM ADVANCED MATERIALS CO LTD

Method for preparing high coercive force sintering rare-earth-iron-p permanent magnetic material

The invention relates to the method used to make rare earth-iron-boron permanent magnetic material with high coercive force which belongs to magnetic material field. The excellent magnetism of the NdFeB permanent magnetism will be obviously reduced while the working environment temperature rises. The invention includes the following steps: using rapid hardening slice technology to make NdFeB rapid hardening slice; smashing to powder with 3-5 micron; making terbium and dysprosium powder with 10-50nm; mixing them with 1-3% weight ratio; orientating at 2.5T magnetic field; processing secondary heat treatment after 2-4 hours sintering at 1050-1120 centigrade degree; the first order heat treatment is at 900-1000 degree centigrade for 1-3h; the secondary is at 550-700 degree centigrade for 1-3h. The invention has better coercive force and lower terbium and dysprosium content compared with the traditional NdFeB permanent magnetic material.
Owner:EARTH PANDA ADVANCE MAGNETIC MATERIAL

Ultrahigh-coercivity sintered neodymium-iron-boron magnet and preparation method thereof

The invention discloses an ultrahigh-coercivity sintered neodymium-iron-boron magnet and a preparation method thereof. The ultrahigh-coercivity sintered neodymium-iron-boron magnet comprises a main phase and a crystal boundary adding phase. The main phase comprises low-HA main alloy and high-HA main alloy. The high magnetocrystalline anisotropy field HA main alloy and the low-HA main alloy are used as the main phase, so that the heavy rare earth element diffuses from the high-HA phase to the low-HA phase in the sintering and heat treatment process to initially improve the coercivity; in addition, alloy components and the preparation technology can be controlled at the same time, the content of Nd2Fe14B in the magnet is improved, and it is ensured that the magnet has the high magnetic energy product. The crystal boundary adding phase can further achieve crystalline grain surface magnetic hardening and improve the coercivity, the microscopic structure is optimized, and the coercivity is further improved. The preparation method of the ultrahigh-coercivity sintered neodymium-iron-boron magnet has the advantages of both a traditional dual alloy method and a single alloy crystal boundary adding method, and is easy to operate and suitable for mass production of ultrahigh-coercivity high-residual-magnetism sintered neodymium-iron-boron magnets.
Owner:ZHEJIANG UNIV +1

Nano toughening NdFeB magnetic material and preparation method thereof

The invention discloses a nano toughening NdFeB magnetic material and a preparation method of the nano toughening NdFeB magnetic material. The main mechanism is that a nano composite crystal boundary phase is formed on an NdFeB main phase crystal boundary, an H-grade rare earth permanent magnetic material with high coercive force M is prepared without doping any heavy rare earth, and then, a SH-grade rare earth permanent magnetic material is prepared by adding a little heavy rare earth. The nano material is prepared by a plasma arc method, has a grain size of 5-80nm and mainly contains metallic elements, such as Al, Cu, Cr, Co, Fe, Zn and the like, and all kinds of rare earth elements. A NdFeB main phase having a rare earth content of Pr-Nd is prepared by a SC-HD process; after smelting and hydrogen breaking, the product grain size is milled to be about 3.5 microns by an air-current mill, and in the argon protection atmosphere, a nano additive is added in a manner of jetting composite, so the nano additive is uniformly attached to the NdFeB main phase. In the sintering process, the nano powder and the main phase form the crystal boundary, the coercive force of NdFeB is greatly increased, and since the product has uniform crystal components, the machining property is also elevated well, the NdFeB magnetic material can be applied to the wider field. At the same time, the technical process is simple, low-cost and suitable for the batch production.
Owner:辽宁恒德磁业有限公司

Solenoid valve with flat core and flat spring

A solenoid valve of the type with a flat core and a flat spring. The present invention related to a solenoid valve comprising a coil, a fixed core arranged inside the coil, a movable core arranged outside the coil, bearing a valve gasket, and a flat return spring to stress the movable core into a rest position, the solenoid valve being characterized in that the flat spring has variable stiffness, preferably bearing without embedding on corresponding surfaces of the solenoid valve.
Owner:ASCO JOUCOMATIC

Method for preparing sintered samarium-cobalt magnet

ActiveCN103065788AGet over the actual ingredientsTo overcome the large deviation of design componentsInorganic material magnetismInductances/transformers/magnets manufactureRemanenceSamarium–cobalt magnet
The invention discloses a method for preparing a sintered samarium-cobalt magnet. The method comprises the following steps of: preparing a first samarium-cobalt alloy and a second samarium-cobalt alloy; performing primary crushing on the first samarium-cobalt alloy and the second samarium-cobalt alloy; mixing first samarium-cobalt alloy primarily crushed magnetic powder and second samarium-cobalt alloy primarily crushed magnetic powder, and performing fine crushing, so that primarily crushed mixed magnetic powder is refined, and components are homogenized; and performing magnetic field orientation forming, cold isostatic pressing, sintering, solid solution treatment and ageing treatment on samarium-cobalt magnetic powder obtained by fine crushing in sequence. The method has the advantages that the first samarium-cobalt alloy has high remanence component characteristic, the second samarium-cobalt alloy has high coercivity component characteristic, the sintered samarium-cobalt magnets with various magnetic properties can be obtained by adjusting the mixing ratio of the first samarium-cobalt alloy primarily crushed magnetic powder to the second samarium-cobalt alloy primarily crushed magnetic powder, and the process is stable and low in cost.
Owner:NINGBO YUNSHENG +3

Method for preparing NdFeB (neodymium-iron-boron) magnet by waste materials

The invention relates to an NdFeB (neodymium-iron-boron) magnet, in particular to a method for preparing the NdFeB magnet by waste materials, and belongs to the technical field of magnetic materials. The preparing method of the NdFeB magnet comprises the following steps that firstly, NdFeB magnet waste materials are cleaned and are dried through being blown, the NdFeB magnet waste materials are crushed into particles being 10 to 15mm by a crushing machine, rare earth metal is added into the particles, then, hydrogen crushing treatment is carried out to obtain crushed powder, and next, antioxidants are added for airflow grinding to obtain fine powder with the average particle diameter being 3.0 to 4.0 mu. m; next, lubricating agents are added, orientation is carried out under the protection atmosphere of nitrogen gas, in addition, pressing forming is carried out, and finally, NdFeB magnet finished products are obtained through discharging plasma sintering, secondary tempering heat treatment and surface treatment. The method has the advantages that waste materials are used as major raw materials, the simple and feasible preparing method is adopted, the recovery and utilization rate of the waste materials is effectively improved, in addition, Tb, Dy, Nd and Ce are added and compounded in the preparing process, and the obtained NdFeB magnet has better coercive force, residual magnetism and magnetic energy product.
Owner:NINGBO GERONGLI MAGNETIC IND

Methods for manufacturing cerium-rich anisotropy nano-crystalline rare-earth permanent magnets

The invention discloses a method for manufacturing cerium-rich anisotropy nano-crystalline rare-earth permanent magnets. The method includes (1), proportioning materials according to a chemical formula of (Ce<x>, RE<1-x>)Fe<100-a-b-c>BTM<c>; (2), melting the materials to obtain alloy ingots; (3), crushing the alloy ingots, and then rapidly quenching melt to obtain rapidly quenched magnetic powder; (4), carrying out hot-pressing on the rapidly quenched magnetic powder for 1-10 minutes at the temperatures ranging from 500 DEG C to 800 DEG C under the pressures ranging from 100MPa to 300MPa, and then enabling the rapidly quenched powder to thermally deform for 3-10 minutes at the temperatures ranging from 600 DEG C to 900 DEG C under the pressures ranging from 50MPa to 200MPa. The invention further provides a method for manufacturing the cerium-rich anisotropy nano-crystalline rare-earth permanent magnets according to chemical formulas of (Ce<x>, RE<1-x>)Fe<100-a-b-c>BTM<c> and NdFe<100-a-b-c>BTM<c>. The methods have the advantages that processes can be simplified, the cost can be reduced, and the obtained cerium-rich anisotropy nano-crystalline rare-earth permanent magnets are excellent in magnetic performance.
Owner:SICHUAN UNIV

Cerium-containing low-melting-point rare-earth permanent magnet liquid phase alloy and production method of permanent magnet comprising same

The invention relates to the technical field of rare-earth permanent magnet materials, in particular to cerium-containing low-melting-point rare-earth permanent magnet liquid phase alloy, a permanent magnet comprising the liquid phase alloy and a production method of the permanent magnet. According to mass percent, the chemical formula of the liquid phase alloy is that (Cex,Nd1-x)y-Mz-Fe100-y-z, wherein 0.1<=x<=1.0, 0.04<=y<=0.9, 0<=z<=5, M is one or several of Co, Al, Cu, Ga, Nb, Mo, Ti, Zr and V. The liquid phase alloy is added in an alloy or rapid hardening mode, cerium elements entering the principal phase can be reduced and the residual magnetism can be improved by aid of scientific and reasonable composition design, the sintering temperature of the neodymium iron boron magnet can be reduced through the low-melting-point liquid phase, and therefore low-temperature sintering is achieved, and reducing of the crystal grain dimension of the magnet is benefited. The microstructure of the liquid phase is controlled through the oxygen content so that the liquid phase is ensured to be of a cerium-containing face-centered cubic structure with high coercivity, further the coercivity of the magnet is improved, and good combination property can be obtained.
Owner:CENT IRON & STEEL RES INST

Commercial rare earth permanent magnet produced from high-abundance rare earth and preparing method thereof

The invention discloses a commercial rare earth permanent magnet produced from high-abundance rare earth and a preparing method of the commercial rare earth permanent magnet. The commercial rare earth permanent magnet comprises a main phase and a grain boundary modification phase, wherein the main phase comprises low H (RE100-aMMa)-Fe-B alloy and high H Nd-Fe-B alloy. According to the commercial rare earth permanent magnet, two kinds of main alloy is adopted, the ingredients of the magnet are controlled, a stable 2:14:1 phase is formed by the high-abundance rare earth, and decomposing will not happen in the sintering process; the Cu element high in electrode potential is added into the grain boundary modification phase, the corrosion resistance of the magnet is improved, and meanwhile the microstructure of the magnet can be optimized by the grain boundary modification phase. According to the method, the two main alloy method is combined with the grain boundary modification technology, the advantages of both the two main alloy method and the grain boundary modification technology are achieved simultaneously, the problems that because of addition of the high-abundance rare earth, the corrosion resistance, the residual magnetism and the magnetic energy product of the magnet are reduced are solved, and the prepared rare earth permanent magnet meets the application requirements of commercial magnets.
Owner:ZHEJIANG UNIV +1

High-performance permanent magnet ferrite material and preparing method thereof

The invention relates to a high-performance permanent magnet ferrite material and a preparing method thereof and belongs to the technical field of magnetic function material preparation. The invention adopts the technical scheme as follows: carrying out preparation according to a main phase molecular formula Sr1-xBaxO.nFe(12-y)/nRy/nO3, wherein x is not smaller than 0 and not bigger than 0.998, n is not smaller than 5.75 and not bigger than 6.15, y is bigger than 0 and not bigger than 0.6, R refers to Cr or Cr and Al, and the content of Cr and Al is smaller than or equal to 0.6 when R refers to Cr and Al; secondarily adding one or more than two of industrial-purity CeO2, Ga2O3 and MoO3. The rest magnetism Br value of the high-performance permanent magnet ferrite prepared by the method is larger than or equal to 390mT, the intrinsic coercivity Hcj value is larger than or equal to 346.1kA/m, and the magnetic energy product (BH)max value is larger than or equal to 28.7kJ/m<3>. The method has the advantages that the high-performance permanent magnet ferrite material with a high performance-to-cost ratio is prepared through the relatively cheap chromium or chromium and aluminum substituted combination additive without adding expensive rare earth and rare metal oxide.
Owner:合肥领远新材料科技有限公司
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products