Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

34 results about "Quantum tunnelling" patented technology

Quantum tunnelling or tunneling (US "tunneling") is the quantum mechanical phenomenon where a subatomic particle passes through a potential barrier. Quantum tunnelling is not predicted by the laws of classical mechanics where surmounting a potential barrier requires enough potential energy.

High-voltage-resisting GaN-based JBS diode based on gradient drift region and production method of high-voltage-resisting GaN-based JBS diode

The invention discloses a high-voltage-resisting GaN-based JBS diode based on a gradient drift region and a production method of the high-voltage-resisting GaN-based JBS diode, and solves the problemthat expected breakdown voltage cannot be reached in the prior art. The high-voltage-resisting GaN-based JBS diode comprises a cathode (1), an n type GaN substrate (2), an n type GaN drift layer (3),an n type AlxGaN structural layer (4), a p type AlyGaN structural layer (5), a plurality of p type GaN structural layers (6) and an anode (7), wherein Al component x of the AlxGaN structural layer isgradually changed from 0 to 0.1, and the doping concentration is 2 to 10x1016cm<-3>; Al component y of the p type AlyGaN structural layer is gradually changed from 0.1 to 0, and the doping concentration is 2x1016cm<-3> to 2x1018cm<-3>. The high-voltage-resisting GaN-based JBS diode disclosed by the invention has the advantages that a quantum tunneling effect is reduced and the breakdown voltage ofa device is improved; in addition, process repeatability and controllability for producing the device are high; the high-voltage-resisting GaN-based JBS diode can be used for a power device.
Owner:XIDIAN UNIV

High-luminous efficiency light emitting diode epitaxial slice and preparation method thereof

The invention discloses a high-luminous efficiency light emitting diode epitaxial slice and a preparation method thereof and belongs to the light-emitting diode field. The high-luminous efficiency light emitting diode epitaxial slice includes a substrate as well as a u type GaN layer, an n-type GaN layer, a multiple-quantum well active layer, a P-type AlGaN layer and a P-type GaN carrier layer which cover the substrate sequentially, wherein the multiple-quantum well active layer includes a plurality of InGaN well layers and a plurality of Gan barrier layers which grow alternately, and the P-type AlGaN layer includes a first P-type AlGaN sub layer, a u type GaN sub layer and a second P-type AlGaN sub layer which cover the multiple-quantum well active layer sequentially. According to the high-luminous efficiency light emitting diode epitaxial slice, potential energy required by holes in the P-type GaN carrier layer to climb over the P-type AlGaN layer can be decreased; quantum states can be formed in the u type GaN sub layer; holes in the P-type GaN carrier layer, of which the potential energy is lower than the potential energy for climbing over the P-type AlGaN layer, can tunnel the u type GaN sub layer through the quantum tunneling effect, and can be further transmitted into quantum wells, and therefore, hole concentration in the multiple-quantum well active layer can be improved.
Owner:HC SEMITEK CORP

Double-gate TFET with graphene strip heterojunction and switch characteristic enhance method thereof

The invention discloses a graphene strip heterojunction double-gate TFET and a switch characteristic lifting method thereof. How to increase the on-state current of TFET is an important research direction of TFET. The source region, the drain region and the channel between the source region and the drain region constitute a graphene band heterojunction; The channel consists of the first section and the second section along the direction from the source area to the drain area. The source region, the second channel region and the drain region are all armchair graphene nanoribbons. The stretchingdirection of the first segment of the channel is at an angle to the stretching direction of the armchair graphene nano band. At the close state, the first section of the channel is a band gap armchair graphene nano band along the length direction of the device, and the density of regional states is 0, so that the close state current is restrained; and at the close state, the first section of thechannel is a band gap armchair graphene nano band along the length direction of the device, and the density of regional states is 0; In the open state, there is a current in the channel, the first section of the channel is a sawtooth graphene band along the current transmission direction, and there is no band gap in the first section of the channel, which promotes the quantum tunneling effect between the source region and the channel, and enhances the open state current.
Owner:HANGZHOU DIANZI UNIV

Quantum-effect device based on MIS (Metal-Insulator-Semiconductor) structure

The invention belongs to the technical field of quantum-effect devices, in particular relates to a quantum-effect device based on an MIS (Metal-Insulator-Semiconductor) structure. The quantum-effect device comprises a semiconductor substrate, a source electrode, a drain electrode, a tunneling insulator layer and a metal layer, wherein the source electrode, the drain electrode, the tunneling insulator layer and the metal layer are arranged on the semiconductor substrate; and the metal layer, the tunneling insulator layer and the semiconductor layer form an MIS structure. The quantum-effect device further comprises a grid electrode and a grating type insulator layer, wherein the grid electrode is arranged at one side of the MIS structure, and the grating type insulator layer is arranged between the MIS structure and the grid electrode. According to the quantum-effect device based on the MIS structure, a quantum tunneling effect and a gated diode are integrated together, and a gated metal insulator semiconductor diode based on the quantum tunneling effect is manufactured by using a platform process. A suitable bias voltage is applied to the quantum-effect device so that the tunnelingefficiency of the quantum-effect device can be controlled, a drain current can be reduced to be much smaller than the drain current of a normal diode, and the power dissipation of a chip is reduced.
Owner:FUDAN UNIV

Electron tunneling based enclosure type grid control metal-insulator device

The invention belongs to the technical field of quantum effect devices, particularly relates to an electron tunneling based enclosure type grid control metal-insulator device. The device comprises a semiconductor substrate, a source electrode, a drain electrode, a tunneling insulator layer, a metal layer, a gate insulator layer and a grid, wherein the source electrode, the drain electrode, the tunneling insulator layer and the metal layer are arranged on the semiconductor substrate; the metal layer, tunneling insulator layer and the semiconductor substrate form an MIS (metal-insulator-semiconductor) structure; the grid is arranged on the gate insulator layer and encloses the MIS structure. According to the invention, the electron tunneling based enclosure type grid control metal-insulatordevice is manufactured by adopting a platform process; the enclosure type grid is used to control the device, thus enhancing the control capacity of the grid; meanwhile, through applying proper bias voltage to the electron tunneling based enclosure type grid control metal-insulator device, the tunneling efficiency can be controlled, leakage current can be reduced to a degree far lower than that of a common diode, thus the power consumption of a chip can be reduced.
Owner:FUDAN UNIV

Selenium antimony sulfide thin film solar cell with 3D structure and preparation method thereof

The invention relates to a selenium antimony sulfide thin film solar cell with a 3D structure and a preparation method thereof, and belongs to the technical field of cell preparation. The thin film solar cell comprises substrate glass, a TiO2 layer, a BaTiO3 thin film layer, a Sb2 (S, Se) 3 thin film layer, a hole transport layer and an electrode layer which are sequentially stacked from bottom to top. The invention further discloses a preparation method of the Sb2 (S, Se) 3 thin film solar cell, the TiO2 layer of the prepared Sb2 (S, Se) 3 thin film solar cell is of a 3D-TiO2 array structure, pn junctions are formed by the TiO2 layer and the Sb2 (S, Se) 3 thin film layer, the BaTiO3 thin film serves as a passivation layer to be inserted between the pn junctions, and recombination of heterojunctions at an interface is reduced. The BaTiO3 thin film layer and the TiO2 layer form a double-buffer-layer structure, the width of a depletion layer is increased, and the open-circuit voltage of the cell can be effectively improved. And the ferroelectricity of BaTiO3 is utilized, so that the separation capacity of current carriers and the open-circuit voltage of the battery are improved. And the thickness of the BaTiO3 film is relatively small, so that the problem of high internal resistance of the battery caused by poor conductivity of BaTiO3 is solved based on the quantum tunneling effect.
Owner:SUZHOU TALESUN SOLAR TECH CO LTD +1

Rare earth single-ion magnet based on bis-salicylaldehyde nitrogen oxide pyridine-2, 6-diformyl hydrazone and preparation method of rare earth single-ion magnet

The invention discloses a rare earth monomolecular magnet based on bis-salicylaldehyde nitrogen oxide pyridine-2, 6-diformyl hydrazone and a preparation method of the rare earth monomolecular magnet based on bis-salicylaldehyde nitrogen oxide pyridine-2, 6-diformyl hydrazone. The magnet is synthesized in a vacuum solvent tube through a low-temperature solvothermal method by taking bis-salicylaldehyde nitrogen oxide pyridine-2, 6-diformyl hydrazone (H4sapho) ligand, dysprosium nitrate and triethylamine as raw materials. The crystal is in a P21/n space group of a monoclinic system, and the molecular formula of the crystal is [Dy (H3sapo) (NO3) 2 (CH3OH) 2]. CH3OH, the compound is of a mononuclear structure formed by chelating an acylhydrazone group on one wing of a single H3sapo-ligand and two nitrate ions with a DyIII ion together. And two adjacent molecules are connected through an intermolecular hydrogen bond to form a dimer. Thermogravimetric and powder diffraction tests respectively show that the magnet has good stability and phase purity. The alternating-current magnetic susceptibility of the magnet shows a frequency-dependent single-ion magnet behavior in a zero field. After the quantum tunneling effect is suppressed by an external magnetic field, the frequency dependence behavior is more obvious, and the effective energy barrier and relaxation time are 29.10 cm <-1 > (40.74 K) and 3.6 * 10 <-5 > s respectively.
Owner:GUILIN UNIVERSITY OF TECHNOLOGY

Quantum-effect device based on MIS (Metal-Insulator-Semiconductor) structure

The invention belongs to the technical field of quantum-effect devices, in particular relates to a quantum-effect device based on an MIS (Metal-Insulator-Semiconductor) structure. The quantum-effect device comprises a semiconductor substrate, a source electrode, a drain electrode, a tunneling insulator layer and a metal layer, wherein the source electrode, the drain electrode, the tunneling insulator layer and the metal layer are arranged on the semiconductor substrate; and the metal layer, the tunneling insulator layer and the semiconductor layer form an MIS structure. The quantum-effect device further comprises a grid electrode and a grating type insulator layer, wherein the grid electrode is arranged at one side of the MIS structure, and the grating type insulator layer is arranged between the MIS structure and the grid electrode. According to the quantum-effect device based on the MIS structure, a quantum tunneling effect and a gated diode are integrated together, and a gated metal insulator semiconductor diode based on the quantum tunneling effect is manufactured by using a platform process. A suitable bias voltage is applied to the quantum-effect device so that the tunnelingefficiency of the quantum-effect device can be controlled, a drain current can be reduced to be much smaller than the drain current of a normal diode, and the power dissipation of a chip is reduced.
Owner:FUDAN UNIV

Graphene strip heterojunction double-gate tfet and its switching characteristic improvement method

The invention discloses a graphene strip heterojunction double-gate TFET and a method for improving switching characteristics thereof. How to improve the on-state current of TFET is an important direction of TFET research. The source region, the drain region and the channel between the source region and the drain region of the present invention form a graphene strip heterojunction; the channel is composed of a first channel section and a second channel section arranged along the direction from the source region to the drain region ; The source region, the second section of the channel and the drain area are all armchair graphene nano-strips; the extending direction of the strips of the first channel and the extending direction of the armchair graphene nano-strips form an included angle. In the off state of the present invention, a section of the channel is a bandgap armchair graphene nano-strip along the length direction of the device, and the regional density of states is 0, which plays a role in suppressing the off-state current; in the on state, there is Current, one section of the channel is a zigzag graphene strip along the direction of current transmission, and there is no band gap in one section of the channel, which promotes the quantum tunneling effect of electrons between the source region and the channel, and increases the on-state current.
Owner:HANGZHOU DIANZI UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products