Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

276 results about "Stress intensity factor" patented technology

The stress intensity factor, K, is used in fracture mechanics to predict the stress state ("stress intensity") near the tip of a crack or notch caused by a remote load or residual stresses. It is a theoretical construct usually applied to a homogeneous, linear elastic material and is useful for providing a failure criterion for brittle materials, and is a critical technique in the discipline of damage tolerance.

Method for evaluating fatigue life of aged reinforced concrete bridge

ActiveCN105825030AThe prediction method is reasonableGeometric CADForecastingStress concentrationCrazing
The invention discloses a method for evaluating the fatigue life of an aged reinforced concrete bridge. The method comprises the following steps of obtaining initial corrosion time of reinforcement in concrete based on the second diffusion law of Fick, and considering the influence of concrete cracking due to corrosion expansion in a corrosion rate model; adopting a small crack growth and near threshold growth analysis and determining relevant parameters of fatigue crack propagation rate of materials by developing a fatigue crack propagation test of reinforced concrete materials; performing a corrosion fatigue test or finite element analysis on corroded reinforcement to obtain stress concentration factors at different corrosion levels, and integrating into a stress intensity factor model to obtain the fatigue crack propagation rate of the reinforcement under the influence of corrosion; comparing the magnitude of a corrosion pit growth rate and the fatigue crack propagation rate and gradually converting into a single growth analysis on fatigue cracks of the reinforcement; meanwhile, combining with vehicle load observing information to realize life evaluation of a bridge at different service stages. The prediction method disclosed by the invention is reasonable and high in popularization, and can provide technical support for evaluating the life of the concrete bridges.
Owner:CHANGSHA UNIVERSITY OF SCIENCE AND TECHNOLOGY

Method for measuring high-temperature creep crack growth threshold value of material

The invention discloses a method for measuring high-temperature creep crack growth threshold value of material. The method comprises the following steps of: for a specific material, according to the creep crack growth test requirement, processing at least 6 standard compact tension specimens, performing crack prefabrication for the well processed at least 6 specimens on a fatigue performance tester, wherein the prefabricated crack length is 0.5 times of the width of each specimen; wedging a wedge-shaped block into an initial notch of each specimen, placing the headmost end of the straight part of the wedge-shaped block at the position of a loading line, providing displacement for the loading line, forming a stress-strain field characterized by a stress strength factor at the tip of the specimen crack, and providing a driving force for the creep crack growth, wherein the specimens with different initial stress strength factors grow after certain time under creep effect in high-temperature environment, and in the same time interval, the crack growth lengths are different; drawing for the different stress strength factors and the corresponding crack growth rates, and solving the creep crack growth threshold value of the material through an extrapolation method. According to the method provided by the invention, multiple specimens can be tested for one time, and thus, the test cost is greatly reduced and the test time is greatly shortened.
Owner:BEIHANG UNIV

Safety assessment method for high-temperature pressure pipeline with crack type defects

The invention discloses a safety assessment method for a high-temperature pressure pipeline with crack type defects. The safety assessment method for the high-temperature pressure pipeline with crack type defects includes steps that 1, gathering data; 2, definitely evaluating the life span; 3, determining load and temperature; 4, analyzing elastic stress; 5, characterizing crack; 6, assessing initial crack leakage and rupture; 7, judging whether the initial crack is safe; 8, judging whether the initial crack is free of creep analysis; 9, calculating reference stress and stress intensity factors; 10, calculating creep rupture life based on the initial crack size; 11, judging whether the creep rupture life is long enough; 12, judging whether the creep is steady creep; 13, calculating steady state creep crack growth; 14, calculating unsteady state creep crack growth; 15, calculating the creep rupture life based on the current crack size; 16, judging whether the current creep rupture life is long enough; 17, assessing the current crack leakage and rupture; 18, refining and evaluating; 19, judging whether the assessed object is safe. The safety assessment method for the high-temperature pressure pipeline with crack type defects can be used for assessing the safety of the high-temperature pressure pipeline with crack type defects under creep load effect.
Owner:HEFEI GENERAL MACHINERY RES INST

Crack propagation rate measurement method

The invention discloses a crack propagation rate measurement method. The method comprises the steps of applying alternating load to a test piece with a single-side penetrated crack by a testing machine; measuring load-displacement curves at an interval of certain loading cycles and fitting a linear segment to obtain the non-dimensional flexibility value of the test piece; acquiring the length of the crack according to the relation of the non-dimensional flexibility value of the single-side penetrated crack and the length of the crack under a clamped boundary condition; recording the number of the current loading cycles to obtain a crack length-load cycle number curve, and determining the crack propagation rate; and calculating the corresponding stress intensity factor, acquiring discrete data and fitting to obtain the parameters of the crack propagation rate. The method has the advantages that the method is suitable for measuring the crack propagation rate under positive and negative stress ratios and can be used for measuring the crack length automatically; and the measurement system has wide application range and is particularly suitable for measuring the crack propagation rate of novel materials such as a metal laminated board, a metal/composite material laminated board, a ceramic matrix composite material, a welding material.
Owner:BEIHANG UNIV +1

Testing method of steel fiber reinforced concrete fracture test crack initiation load

The invention relates to a testing method of steel fiber reinforced concrete fracture test crack initiation load, and belongs to the technical field of concrete cracking parameter testing. The testing method provided by the invention is characterized in that when a steel fiber reinforced concrete coped beam specimen cracks, a stress intensity factor of a prefabrication crack front edge achieves concrete fracture toughness, and the steel fibre blocking action is not exerted; the stress intensity factor generated by external load and concrete cracking toughness(i)K(/i) IC are equal, the external load value which is corresponding to a numerical value (i)K(/i)IC of the stress intensity factor generated by the external load can be used for determining the crack initiation load according to the curve relation graph of the external load and the stress intensity factor (i)K generated by the external load (img file='2014100081259100004dest_path_image002.TIF'wi='8'he='21'/)(/i)-(i)P(/i) curve relational graph. The testing method provided by the invenytion has the advantages that the required equipment, analyzing and processing method are simple, the cost is low, and the precision is high.
Owner:YELLOW RIVER INST OF HYDRAULIC RES YELLOW RIVER CONSERVANCY COMMISSION

Method for predicting service life of reinforced concrete bridge under conditions of seasonal corrosion and fatigue coupling

ActiveCN109827855AEnables corrosion fatigue life assessmentNovel forecasting methodWeather/light/corrosion resistanceMaterial testing goodsStress concentrationRebar
The invention discloses a method for predicting the service life of a reinforced concrete bridge under the conditions of seasonal corrosion and fatigue coupling. The method comprises the steps: dividing the service life of the reinforced concrete bridge into three stages: corrosion initiation-pure fatigue crack development stage, a rust pit and fatigue crack competing development stage and a structure failure stage; establishing an initial reinforcing steel bar corrosion model and a rust pit growth model based on the Fick second diffusion law and the consideration of the influence of concreterust expansion cracking damage; testing and simulating a reinforcing steel bar crack propagation rule under the influence of a four-season environment, and determining fatigue crack growth characterization parameters; constructing a stress intensity factor model considering the influence of stress concentration, and proposing a steel bar corrosion fatigue crack growth analysis method correspondingto a four-season environment; enabling the structural failure criterion to be clear, combining with the vehicle load observation information, performing the systematic consideration of the competitive coupling relation between rust pit growth and fatigue crack growth, judging a failure mode in real time, and achieving the prediction of the service life of the bridge. The method is novel and reasonable, and can provide technical support for safety assessment of the concrete bridge.
Owner:CHANGSHA UNIVERSITY OF SCIENCE AND TECHNOLOGY

High-level assessment method for defects of welding joint area at piping safety end of pressure vessel of AP1000 nuclear reactor

The invention relates to a high-level assessment method for defects of a welding joint area at a piping safety end of a pressure vessel of an AP1000 nuclear reactor. The method comprises the following steps of: characterizing the detected dimensions of unpenetrated circumferential inner surface defects; establishing a failure assessment graph, wherein the failure assessment graph comprises the family of the failure assessment curves of the unpenetrated circumferential inner surface defects in the different dimensions, which are acquired on the basis of three-dimensional finite element calculation; selecting the failure assessment curves according to the dimensions of the defects; based on the three-dimensional finite element calculation, calculating the family of the curves that stress intensity factors change along an extra resultant bending moment at the deepest points of the unpenetrated circumferential inner surface defects in the different dimensions; determining the stress intensity factors according to the resultant bending moment and the dimensions of the defects; calculating a specific breaking strength parameter Kr; based on the three-dimensional finite element calculation, acquiring the family of the ultimate load bending moment curves of the unpenetrated circumferential inner surface defects in the different dimensions; determining ultimate load bending moments according to the dimensions of the defects; calculating a load ratio parameter Lr; and marking a calculated coordinate (Lr, Kr) on the failure assessment graph, and judging whether falling into an area which is encircled by the selected failure assessment curves, a vertical end line and coordinate axes or not.
Owner:EAST CHINA UNIV OF SCI & TECH

Method for predicting residual fatigue life of composite material adhesive bonding repair structure

ActiveCN106568660AImproving the Prediction Accuracy of Remaining Fatigue LifeImprove forecast accuracyMaterial strength using repeated/pulsating forcesStress intensity factorPredictive methods
The invention provides a method for predicting the residual fatigue life of a composite material adhesive bonding repair structure. The method comprises the following steps: (1) determining the material constants of an unrepaired structure; (2) establishing a model of a repaired structure, after the establishment, assembling entities, dividing grids, and creating constraints; (3) solving the relational expression between the stress intensity factor amplitude and the crack length; (4) according to the breaking tenacity of a metal material, based on the stress intensity factor output by software, determining the final failure crack length of the repaired structure; and (5) substituting the material constants, the final failure crack length, and the relational expression between the stress intensity factor change amplitude and the crack length into Paris formula, and calculating the residual fatigue life of the repaired structure through integration. The calculation steps are simplified, the prediction efficiency on the residual fatigue life of a composite material adhesive bonding repair structure is obviously improved, the calculation cost is reduced, and the development of the composite material adhesive bonding repair technology is promoted.
Owner:QINGDAO CAMPUS AVIATION ENG COLLEGE OF THE PEOPLES LIBERATION ARMY NAVY

Method for determining separation and distribution of structural-member composite crack front stress intensity factors

The invention relates to a method determining separation and distribution of structural-member composite crack front stress intensity factors. The method comprises the following steps: giving thermal load, surface force load and volume force load borne by a structural member, and a universal weighting function method basic equation for three-dimensional I, II, III composite crack problems under the independent or combined actions of the thermal load, the surface force load and the volume force load; dividing the crack front into random N-1 numbered subsections through N numbered nodes, and introducing a basic interpolation function Nj(s) and a partial variation function N'j(s) at each node j, thereby constructing a finite number of partial variation modes and interpolation modes; and then introducing 3 basic reference loads to solve the basic equation, thereby determining the numerical solution of the separation and distribution of composite stress intensity factors KI, KII and KIII. By utilizing the self consistency, the method can obtain the high-precision exact solution of the distribution of the three-dimensional crack front composite stress intensity factors KI, KII and KIII by constructing an iterative process.
Owner:ZHEJIANG UNIV OF TECH

Testing method for dynamic crack arrest toughness of I-type crack under impact load

The invention discloses a testing method for the dynamic crack arrest toughness of an I-type crack under the impact load, and belongs to the technical field of geotechnical engineering. The method includes the steps of conducting impact test research through a large-diameter separated type Hopkinson pressing rod and a test configuration designed by an inventor, determining the dynamic crack toughness of a sample through an experiment-numerical value method, calculating the load borne by the sample and the moment of crack arrest through strain signals obtained through a test, inputting an obtained time travel curve to a finite element program Ansys, calculating the near-field displacement of a crack tip through a 1/4 node unit, obtaining the time travel curve of the I-type dynamic rupture stress strength factor of the sample through a displacement extrapolation method, obtaining the strain strength factor value corresponding to the crack arrest moment as the dynamic crack arrest toughness of the material, and then obtaining the pure I-type crack dynamic crack arrest toughness under the effect of the impact load. The method is simple and convenient to operate and should have more practical application meaning in research of the dynamic crack arrest characteristic of rock under the impact dynamic load.
Owner:SICHUAN UNIV

Aero-engine turbine blade reliability evaluation method based on fracture mechanics

The invention discloses an aero-engine turbine blade reliability evaluation method based on fracture mechanics. The method comprises the following steps: S1, establishing a simplified model of a bladesection by taking a turbine blade as a research object, calculating a stress intensity factor of the turbine blade containing an initial I-type crack at a blade root by applying a finite element method, substituting the stress intensity factor into a shape factor calculation formula, and determining a shape factor parameter; S2, establishing a turbine blade reliability model based on the generalized stress intensity interference model; and S3, establishing a probability density function of load and fracture toughness, establishing a probability life model and a reliability model for the bladein combination with a Paris formula, and solving the model to obtain the change condition of the reliability of the turbine blade along with the life. According to the method, initial defects existing in the blade are considered, on the basis of the initial defects, the crack propagation life of the I-shaped cracks on the surface of the blade under the cyclic load is established, and life prediction and reliability evaluation of the blade can be more accurate.
Owner:UNIV OF ELECTRONICS SCI & TECH OF CHINA
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products