Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

930results about "Photo-emissive cathodes manufacture" patented technology

Method for patterning carbon nanotube coating and carbon nanotube wiring

A method for making a nanocomposite electrode or circuit pattern includes forming a continuous carbon nanotube layer impregnated with a binder and patterning the binder resin using various printing or photo imaging techniques. An alternative method includes patterning the carbon nanotube layer using various printing or imaging techniques and subsequently applying a continuous coating of binder resin to the patterned carbon nanotube layer. Articles made from these patterned nanocomposite coatings include transparent electrodes and circuits for flat panel displays, photovoltaics, touch screens, electroluminescent lamps, and EMI shielding.
Owner:EIKOS

Methods for manufacture of self-aligned integrally gated nanofilament field emitter cell and array

The present invention discloses a new field emitter cell and array consisting of groups of nanofilaments forming emitter cathodes. Control gates are microprocessed to be integrally formed with groups of nanofilament emitter cathodes on a substrate. Groups of nanofilaments are grown directly on the substrate material. As a result, the control gates and groups of nanofilaments are self-aligned with one another.
Owner:SEC OF THE NAVY AS REPRESENTED BY THE UNITED STATES OF AMERICA THE

Self-oriented bundles of carbon nanotubes and method of making same

A field emission device having bundles of aligned parallel carbon nanotubes on a substrate. The carbon nanotubes are oriented perpendicular to the substrate. The carbon nanotube bundles may be up to 300 microns tall, for example. The bundles of carbon nanotubes extend only from regions of the substrate patterned with a catalyst material. Preferably, the catalyst material is iron oxide. The substrate is preferably porous silicon, as this produces the highest quality, most well-aligned nanotubes. Smooth, nonporous silicon or quartz can also be used as the substrate. The method of the invention starts with forming a porous layer on a silicon substrate by electrochemical etching. Then, a thin layer of iron is deposited on the porous layer in patterned regions. The iron is then oxidized into iron oxide, and then the substrate is exposed to ethylene gas at elevated temperature. The iron oxide catalyzes the formation of bundles of aligned parallel carbon nanotubes which grow perpendicular to the substrate surface. The height of the nanotube bundles above the substrate is determined by the duration of the catalysis step. The nanotube bundles only grow from the patterned regions.
Owner:THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIV

Method of manufacturing a light filament from carbon nanotubes

A light filament (206) formed from carbon nanotubes is characterized by high mechanical strength and durability at elevated temperatures, a high surface area to volume ratio, and high emissivity. Additionally, electrical resistance of the light filament does not increase with increasing temperature as much as electrical resistance of metallic light filaments. Accordingly, power consumption of the light filament is low at incandescent operating temperatures. A method for making a light filament made of carbon nanotubes includes the steps of: forming an array of carbon nanotubes (20); pulling out carbon nanotube yarn (204) from the carbon nanotube array; and winding the yarn between two leads (30) functioning as electrodes to form the light filament.
Owner:HON HAI PRECISION IND CO LTD +1

Liquid crystal display device and method for manufacturing the same, and liquid crystal television receiver

At least one or more of a conductive layer which forms a wiring or an electrode and a pattern necessary for manufacturing a display panel such as a mask for forming a predetermined pattern is formed by a method capable of selectively forming a pattern to manufacture a liquid crystal display device. A droplet discharge method capable of forming a predetermined pattern by selectively discharging a droplet of a composition in accordance with a particular object is used as a method capable of selectively forming a pattern in forming a conductive layer, an insulating layer, or the like.
Owner:SEMICON ENERGY LAB CO LTD

Field emission display and methods of forming a field emission display

A field emission device and method of forming a field emission device are provided in accordance with the present invention. The field emission device is comprised of a substrate (12) having a deformation temperature that is less than about six hundred and fifty degrees Celsius and a nano-supported catalyst (22) formed on the substrate (12) that has active catalytic particles that are less than about five hundred nanometers. The field emission device is also comprised of a nanotube (24) that is catalytically formed in situ on the nano-supported catalyst (22), which has a diameter that is less than about twenty nanometers.
Owner:MOTOROLA SOLUTIONS INC

Method of making encapsulated display devices

An encapsulated display device. The device includes a substrate, an environmentally sensitive display device adjacent to the substrate, and at least one first barrier stack adjacent to the environmentally sensitive display device. The barrier stack encapsulates the environmentally sensitive display device. It includes at least one first barrier layer and at least one first polymer layer. The encapsulated display device optionally includes at least one second barrier stack located between the substrate and the environmentally sensitive display device. The second barrier stack includes at least one second barrier layer and at least one second polymer layer. A method for making an encapsulated display device is also disclosed.
Owner:SAMSUNG DISPLAY CO LTD

X-ray generating mechanism using electron field emission cathode

InactiveUS6850595B2High emitted electron current densityHigh electron beam currentX-ray tube electrodesNanoinformaticsElectron currentSoft x ray
An x-ray generating device includes a field emission cathode formed at least partially from a nanostructure-containing material having an emitted electron current density of at least 4 A / cm2. High energy conversion efficiency and compact design are achieved due to easy focusing of cold cathode emitted electrons and dramatic reduction of heating at the anode. In addition, by pulsing the field between the cathode and the gate or anode and focusing the electron beams at different anode materials, pulsed x-ray radiation with varying energy can be generated from a single device.
Owner:THE UNIV OF NORTH CAROLINA AT CHAPEL HILL

Display, method for driving display, and electronic apparatus

ActiveUS20080246403A1High bootstrap ratioCapacitance of holding can be increasedElectroluminescent light sourcesSolid-state devicesDisplay deviceEngineering
Disclosed herein is a display including: a pixel array part configured to include pixels that are arranged in a matrix, each having an electro-optical element, a write transistor for writing a video signal, a drive transistor for driving the electro-optical element based on the video signal written by the write transistor, and a holding capacitor connected between the gate and source of the drive transistor, wherein the holding capacitor includes a first electrode, a second electrode disposed to face one surface of the first electrode for forming a first capacitor, and a third electrode disposed to face the other surface of the first electrode for forming a second capacitor, and the first capacitor and the second capacitor are connected in parallel to each other electrically.
Owner:SONY CORP

Structured targets for x-ray generation

We disclose targets for generating x-rays using electron beams, along with their method of fabrication. The targets comprise a number of microstructures fabricated from an x-ray target material arranged in close thermal contact with a substrate such that the heat is more efficiently drawn out of the x-ray target material. This in turn allows irradiation of the x-ray generating substance with higher electron density or higher energy electrons, which leads to greater x-ray brightness, without inducing damage or melting.The microstructures may comprise conventional x-ray target materials (such as tungsten) that are patterned at micron-scale dimensions on a thermally conducting substrate, such as diamond. The microstructures may have any number of geometric shapes to best generate x-rays of high brightness and efficiently disperse heat.In some embodiments, the target comprising microstructures may be incorporated into a rotating anode geometry, to enhance x-ray generation in such systems.
Owner:SIGRAY INC

Light emitting device and manufacturing method of the same

Not all of light generated in the light emitting layer comprising the organic material are taken out in the desirable direction. For example, light emitted in the lateral direction (the direction parallel to the substrate face) is not taken out and therefore is a loss. An object of the present invention is to provide a light emitting device structured so as to increase the amount of light which is taken out in a certain direction after emitted from a light emitting element, as well as a method of manufacturing this light emitting device.In the present invention, an upper end portion of an insulating material 19 that covers an end portion of a first electrode 18 is formed to have a curved surface having a radius of curvature, a second electrode 23a is formed to have a slant face as going from its center portion toward its end portion along the curved surface. Light emitted from a light emitting layer comprising an organic material 20 that is formed on the second electrode 23a is reflected at the slant face of the second electrode 23a to increase the total amount of light taken out in the direction indicated by the arrow in FIG. 1A.
Owner:SEMICON ENERGY LAB CO LTD

Electron-emitting element and electron source, field emission image display device, and fluorescent lamp utilizing the same and methods of fabricating the same

Disclosed are an electron-emitting element having a large operating current at a low operating voltage and excellent operation stability, and an electron source, an image display device and the like utilizing such an electron-emitting element, and further a method of fabricating such an element with few process steps at low cost. A cold cathode member is configured utilizing hybrid particle of a first particle serving to emit electrons into the space and a second particle being in the vicinity of the first particle and serving to control the position of the first particle. In this configuration, it is preferable that the first particle have a higher electron emission efficiency than the second particle and that the second particle be conductive.
Owner:PANASONIC CORP

Method for making carbon nanotube-based field emission device

A preferred method for making a carbon nanotube-based field emission device in accordance with the invention includes the following steps: providing a substrate (22) with a surface; depositing a catalyst layer (24) on a predetermined area on the surface of the substrate; forming a carbon nanotube array (30) extending from the predetermined area; forming a cathode electrode (40) on top of the carbon nanotube array; and removing the substrate so as to expose the carbon nanotube array.
Owner:TSINGHUA UNIV +1

Enhanced field emission from carbon nanotubes mixed with particles

The present invention is directed toward cathodes and cathode materials comprising carbon nanotubes (CNTs) and particles. The present invention is also directed toward field emission devices comprising a cathode of the present invention, as well as methods for making these cathodes. In some embodiments, the cathode of the present invention is used in a field emission display. The invention also comprises a method of depositing a layer of CNTs and particles onto a substrate to form a cathode of the present invention, as well as a method of controlling the density of CNTs used in this mixed layer in an effort to optimize the field emission properties of the resulting layer for field emission display applications.
Owner:SAMSUNG ELECTRONICS CO LTD

Field emission devices using ion bombarded carbon nanotubes

The present invention relates to a field emission device comprising an anode and a cathode, wherein said cathode includes carbon nanotubes which have been treated with an ion beam. The ion beam may be any ions, including gallium, hydrogen, helium, argon, carbon, oxygen, and xenon ions. The present invention also relates to a field emission cathode comprising carbon nanotubes, wherein the nanotubes have been treated with an ion beam. A method for treating the carbon nanotubes and for creating a field emission cathode is also disclosed. A field emission display device containing carbon nanotube which have been treated with an ion beam is further disclosed.
Owner:HYPERION CATALYSIS INT

Method and apparatus for producing electron source using dispenser to produce electron emitting portions

In order to suppress variation in delivery amounts in dispensing a material for forming electron emitting portions, a substantially homogeneous material is dispensed from a plurality of output portions to each of plural objective portions. This averages amounts of the material dispensed to the respective objective portions even if there is variation in delivery amounts of material from the respective output portions.
Owner:CANON KK

Self-aligned gated rod field emission device and associated method of fabrication

A self-aligned gated field emission device and an associated method of fabrication are described. The device includes a substrate and a porous layer disposed adjacent to the surface of the substrate, wherein the porous layer defines a plurality of substantially cylindrical channels, each of the plurality of substantially cylindrical channels aligned substantially parallel to one another and substantially perpendicular to the surface of the substrate. The device also includes a plurality of substantially rod-shaped structures disposed within at least a portion of the plurality of substantially cylindrical channels defined by the porous layer and adjacent to the surface of the substrate, wherein a portion of each of the plurality of substantially rod-shaped structures protrudes above the surface of the porous layer. The device further includes a gate dielectric layer disposed on the surface of the porous layer, wherein the gate dielectric layer is disposed between the plurality of substantially rod-shaped structures. The device still further includes a conductive layer selectively disposed on the surface of the gate dielectric layer, wherein the conductive layer is selectively disposed between the plurality of substantially rod-shaped structures.
Owner:GENERAL ELECTRIC CO

Nano-enhanced raman spectroscopy substrate packaging structure

Packaged NERS-active structures are disclosed that include a NERS substrate having a NERS-active structure thereon, and a packaging substrate over the NERS substrate having an opening therethrough, the opening in alignment with the NERS-active structure. A membrane may cover the opening in the packaging substrate. In order to perform nanoenhanced Raman spectroscopy, the membrane may be removed, and an analyte placed on the NERS substrate adjacent the NERS-active structure. The membrane may be replaced with another membrane after the analyte has been placed on the substrate. The membrane may maintain the pristine state of the substrate before it is deployed, and the replacement membrane may preserve the substrate and analyte for archival purposes. Also disclosed are methods for performing NERS with packaged NERS-active structures.
Owner:HEWLETT PACKARD DEV CO LP

Atomically sharp field emission cathodes

An electron emitting device characterized by a monocrystalline substrate, a plurality of monocrystalline nanomesas or pillars disposed on the substrate in a spaced relationship and extending generally normally therefrom, monocrystalline self-assembled tips disposed on top of the nanomesas, and essentially atomically sharp apexes on the tips for field emitting electrons. A method for making the emitters is characterized by forming a gate electrode and gate electrode apertures before forming the tips on the nanomesas.
Owner:THE UNITED STATES OF AMERICA AS REPRESENTED BY THE SECRETARY OF THE NAVY

Spacers for field emission displays

The disclosed method for forming a field emission display includes forming a cathode and an anode, forming a plurality of photoresist posts over the cathode, and coating the posts with a coating material. The coating material forms sidewalls around the posts. The photoresist posts may then be removed from within the sidewalls. The anode may then be fitted onto the sidewalls so that the sidewalls function as spacers in the field emission display.
Owner:MICRON TECH INC

Electron-emitting device, electron source, image-forming apparatus, and method for producing electron-emitting device and image forming apparatus

A method for producing a durable electron-emitting device having a uniform electron emission characteristic, an electron source, and an image-forming apparatus having a uniform display characteristic for a long period are provided. The method for producing an electron-emitting device according to the present invention includes the steps of: disposing a cathode electrode on a surface of a substrate; providing an electrode opposite the cathode electrode; disposing plural pieces of fiber containing carbon as a main component on the cathode electrode; and applying potential higher than potential applied to the cathode electrode under depressurized condition to an electrode opposite the cathode electrode.
Owner:CANON KK

Method for making a carbon nanotube-based field emission cathode device

ActiveUS20050236951A1Improve Field Emission EfficiencyAccelerate emissionsElectric discharge tubesNanoinformaticsCarbon nanotubeSolvent
A preferred method for making a carbon nanotube-based field emission cathode device in accordance with the invention includes the following steps: preparing a solution having a solvent and a predetermined quantity of carbon nanotubes dispersed therein; providing a base with an electrode (101) formed thereon; forming a layer of conductive grease (102) on the base; distributing the solution on the layer of conductive grease to form a carbon nanotube layer (103) on the conductive grease; and scoring the layer of conductive grease, for separating first ends of at least some of the carbon nanotubes from the conductive grease for attaining effective carbon nanotube field emission cathode.
Owner:HON HAI PRECISION IND CO LTD +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products