Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

249 results about "Virus infected cell" patented technology

Method for the generation of antigen-specific lymphocytes

InactiveUS20070116690A1Function increaseEnhancing function of T cellBiocideVirusesAutoimmune conditionAutoimmune disease
The invention provides systems and methods for the generation of lymphocytes having a unique antigen specificity. In a preferred embodiment, the invention provides methods of virally infecting cells from bone marrow with one or more viral vectors that encode antigen-specific antibodies for the production of, for example B cells and T cells. In some embodiments, the viral vectors include an IRES or 2A element to promote separation of, for example, the α subunit and β subunit of a T cell receptor (TCR) or heavy and light chains of a B-cell antibody. The resulting lymphocytes, express the particular antibody that was introduced in the case of B cells and TCR in the case of T cells. The lymphocytes generated can be used for a variety of therapeutic purposes including the treatment of various cancers and the generation of a desired immune response to viruses and other pathogens. The resulting cells develop normally and respond to antigen both in vitro and in vivo. We also show that it is possible to modify the function of lymphocytes by using stem cells from different genetic backgrounds. Thus our system constitutes a powerful tool to generate desired lymphocyte populations both for research and therapy. Future applications of this technology may include treatments for infectious diseases, such as HIV/AIDS, cancer therapy, allergy, and autoimmune disease.
Owner:CALIFORNIA INST OF TECH

Method for the generation of antigen-specific lymphocytes

InactiveUS7939059B2Function increaseEnhancing function of T cellBiocideVirusesDiseaseAutoimmune disease
The invention provides systems and methods for the generation of lymphocytes having a unique antigen specificity. In a preferred embodiment, the invention provides methods of virally infecting cells from bone marrow with one or more viral vectors that encode antigen-specific antibodies for the production of, for example B cells and T cells. In some embodiments, the viral vectors include an IRES or 2A element to promote separation of, for example, the α subunit and β subunit of a T cell receptor (TCR) or heavy and light chains of a B-cell antibody. The resulting lymphocytes, express the particular antibody that was introduced in the case of B cells and TCR in the case of T cells. The lymphocytes generated can be used for a variety of therapeutic purposes including the treatment of various cancers and the generation of a desired immune response to viruses and other pathogens. The resulting cells develop normally and respond to antigen both in vitro and in vivo. We also show that it is possible to modify the function of lymphocytes by using stem cells from different genetic backgrounds. Thus our system constitutes a powerful tool to generate desired lymphocyte populations both for research and therapy. Future applications of this technology may include treatments for infectious diseases, such as HIV / AIDS, cancer therapy, allergy, and autoimmune disease.
Owner:CALIFORNIA INST OF TECH

DNA (Deoxyribose Nucleic Acid) aptamer for detecting grouper iridovirus infection, as well as screening method and application of DNA aptamer

The invention discloses a DNA (Deoxyribose Nucleic Acid) aptamer for detecting grouper iridovirus infection, as well as a screening method and an application of the DNA aptamer. Two inverse screening steps are introduced in each screening process; first, a single-stranded DNA library of the former screening process is bound with normal cells to remove nonspecific ssDNA (single-stranded DNA) bound with the normal cells of a grouper; then, supernatant is bound with grouper iridovirus infected cells for screening; and ssDNA separated from the grouper iridovirus infected cells is bound with the normal cells for separation to obtain the supernatant. A PCR (Polymerase Chain Reaction) amplification library prepares the single-stranded DNA library. The above screening flow is repeated; compared with the number of the normal cells in the first screening process, the number of the normal cells in the screening process is increased by 2-6 times; compared with binding time of the library and the cells in the first screening process, the binding time of the library and the cells in the subsequent screening process is increased to 1h from 0.5h; and the binding time of the library and the virus infected cells is shortened to 0.5h from 1h to improve the screening efficiency of each process.
Owner:SOUTH CHINA SEA INST OF OCEANOLOGY - CHINESE ACAD OF SCI

DNA (Deoxyribose Nucleic Acid) aptamer for detecting grouper iridovirus infection, as well as screening method and application of DNA aptamer

The invention discloses a DNA (Deoxyribose Nucleic Acid) aptamer for detecting grouper iridovirus infection, as well as a screening method and an application of the DNA aptamer. Two inverse screening steps are introduced in each screening process; first, a single-stranded DNA library of the former screening process is bound with normal cells to remove nonspecific ssDNA (single-stranded DNA) bound with the normal cells of a grouper; then, supernatant is bound with grouper iridovirus infected cells for screening; and ssDNA separated from the grouper iridovirus infected cells is bound with the normal cells for separation to obtain the supernatant. A PCR (Polymerase Chain Reaction) amplification library prepares the single-stranded DNA library. The above screening flow is repeated; compared with the number of the normal cells in the first screening process, the number of the normal cells in the screening process is increased by 2-6 times; compared with binding time of the library and the cells in the first screening process, the binding time of the library and the cells in the subsequent screening process is increased to 1h from 0.5h; and the binding time of the library and the virus infected cells is shortened to 0.5h from 1h to improve the screening efficiency of each process.
Owner:SOUTH CHINA SEA INST OF OCEANOLOGY - CHINESE ACAD OF SCI

DNA (Deoxyribose Nucleic Acid) aptamer for detecting grouper iridovirus infection, as well as screening method and application of DNA aptamer

The invention discloses a DNA (Deoxyribose Nucleic Acid) aptamer for detecting grouper iridovirus infection, as well as a screening method and an application of the DNA aptamer. Two inverse screening steps are introduced in each screening process; first, a single-stranded DNA library of the former screening process is bound with normal cells to remove nonspecific ssDNA (single-stranded DNA) bound with the normal cells of a grouper; then, supernatant is bound with grouper iridovirus infected cells for screening; and ssDNA separated from the grouper iridovirus infected cells is bound with the normal cells for separation to obtain the supernatant. A PCR (Polymerase Chain Reaction) amplification library prepares the single-stranded DNA library. The above screening flow is repeated; compared with the number of the normal cells in the first screening process, the number of the normal cells in the screening process is increased by 2-6 times; compared with binding time of the library and the cells in the first screening process, the binding time of the library and the cells in the subsequent screening process is increased to 1h from 0.5h; and the binding time of the library and the virus infected cells is shortened to 0.5h from 1h to improve the screening efficiency of each process.
Owner:SOUTH CHINA SEA INST OF OCEANOLOGY - CHINESE ACAD OF SCI
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products