Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

46results about How to "Absorption loss" patented technology

High Power Semiconductor Laser Diode

Semiconductor laser diodes, particularly high power AlGaAs-based ridge-waveguide laser diodes, are often used in opto-electronics as so-called pump lasers for fiber amplifiers in optical communication lines. To provide the desired high power output and stability of such a laser diode and avoid degradation during use, the present invention concerns an improved design of such a device, the improvement in particular significantly minimizing or avoiding (front) end section degradation of such a laser diode and significantly increasing long-term stability. This is achieved by separating the waveguide ridge into an active main ridge section (4) and at least one separate section (12) located at an end of the laser diode, which may be passive. The separation is provided by a trench or gap (10) in the waveguide ridge. The active waveguide section (4) is at least partly covered by the electrode (6) providing the carriers that does not extend to cover the separate ridge section (12), which thus remains essentially free of carriers injected through said electrode (6). There may be a plurality such separate ridge sections, e.g. two separate ridge sections (12, 212), one at each end of the laser diode, dividing the ridge waveguide into three ridge sections, an active main ridge section (4) in the center and a passive separate ridge section (12, 212) at either end. The trenches (10, 110) between the sections and/or the shape and size of the separate ridge section (s) (12, 212) may be adjusted to act as spatial mode filters.
Owner:II VI DELAWARE INC

Thin-film photoelectric conversion device

This invention intends to develop a technique for forming an interlayer with excellent optical characteristics and to provide a photoelectric conversion device having high conversion efficiency. To realize this purpose, a series connection through an intermediate layer is formed in the thin-film photoelectric conversion device of the invention, and the interlayer is a transparent oxide layer in its front surface and n pairs of layers stacked therebehind (n is an integer of 1 or more), wherein each of the pair of layers is a carbon layer and a transparent oxide layer stacked in this order. Film thicknesses of each layer are optimized to improve wavelength selectivity and stress resistance while keeping the series resistance.
An embodiment of the photoelectric conversion device is characterized in that; a transparent insulating substrate is located on the light incidence side, and a transparent conductive layer, at least one photoelectric conversion unit, a transparent electrode layer having electrical conductivity as typified by zinc oxide, a hard carbon layer having electrical conductivity as typified by diamond-like carbon, and a high reflecting electrode layer are stacked in this order on an opposite surface from a light incidence side of the transparent insulating substrate.
Owner:KANEKA CORP

High power semiconductor laser diode

Semiconductor laser diodes, particularly high power AlGaAs-based ridge-waveguide laser diodes, are often used in opto-electronics as so-called pump lasers for fiber amplifiers in optical communication lines. To provide the desired high power output and stability of such a laser diode and avoid degradation during use, the present invention concerns an improved design of such a device, the improvement in particular significantly minimizing or avoiding (front) end section degradation of such a laser diode and significantly increasing long-term stability. This is achieved by separating the waveguide ridge into an active main ridge section (4) and at least one separate section (12) located at an end of the laser diode, which may be passive. The separation is provided by a trench or gap (10) in the waveguide ridge. The active waveguide section (4) is at least partly covered by the electrode (6) providing the carriers that does not extend to cover the separate ridge section (12), which thus remains essentially free of carriers injected through said electrode (6). There may be a plurality such separate ridge sections, e.g. two separate ridge sections (12, 212), one at each end of the laser diode, dividing the ridge waveguide into three ridge sections, an active main ridge section (4) in the center and a passive separate ridge section (12, 212) at either end. The trenches (10, 110) between the sections and / or the shape and size of the separate ridge section (s) (12, 212) may be adjusted to act as spatial mode filters.
Owner:II VI DELAWARE INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products