Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

63results about How to "Eliminate capacitance" patented technology

Conductivity Counter

A conductivity counter and method of determining conductivity of a fluid sample are disclosed. The counter is suitable for high-speed, accurate counting of discrete events or items, such as cancer cells, passing through a fluid sample cell. A variable frequency current source is used to supply an excitation current to a sample cell connected in parallel with an inductance or the electrical equivalence of an inductance. This configuration can be accurately modeled as a parallel RLC circuit when the system is operated at a stable frequency. The current source frequency is tuned to the resonance frequency of the equivalent RLC circuit, which effectively eliminates the capacitive and inductive components of the impedance, leaving only purely resistive components. The output of the equivalent RLC circuit is connected to a high input impedance buffer amplifier and then to a phase sensitive detector, which detects the phase shift resulting from the equivalent RLC circuit. The output is filtered and a differencing amplifier is used to zero out the output signal due to the system components and the sample cell buffer solution prior to taking active readings. The remaining output signal is due to perturbations in the fluid sample, such as passing cancer cells. This output is sent to a high-gain output amplifier and then supplied to a suitable signal processing device or system, such as a computer.
Owner:BOARD OF SUPERVISORS OF LOUISIANA STATE UNIV & AGRI & MECHANICAL COLLEGE

JFET With Built In Back Gate in Either SOI or Bulk Silicon

A process for manufacturing a Junction Field-Effect Transistor, comprises doping a semiconductor material formed on an insulating substrate with impurities of a first conductivity type to form a well region. The process continues by implanting impurities of a second conductivity type into said well region to form a channel region, and by implanting impurities of the first conductivity type in said well region to form a back gate region. The process continues by forming a trench to expose at least one sidewall of said channel region, wherein the trench extends far enough along the sidewall to expose at least a portion of said back gate region. The process continues by depositing polysilicon to fill said trench along the at least one sidewall of said channel region and at least a portion of said back gate region, wherein at least a portion of the polysilicon will form a gate contact. The polysilicon is then doped with impurities of a first conductivity type. The process concludes by annealing the polysilicon to activate the doped impurities and to cause the doped impurities to diffuse along the at least one sidewall of said channel region so as to form a top gate region. The top gate region extends far enough to make electrical contact with said back gate region.
Owner:MIE FUJITSU SEMICON

A structure of SiC UMOSFET integrated with SBD and a preparation method thereof

The invention provides a silicon carbide trench gate metal oxide with semiconductor field effect transistor (SiC UMOSFET) structure integrated Schottky diode (SBD) and a method for manufacturing the same, The structure is characterized by, a p +-type bury layer (50) is formed on the n-type current transport layer (40) by implantation, and further an n-type current transport layer (40) is epitaxially formed so that the p +-type buried layer (50) floats, and the p +-type buried layer (50) can effectively reduce the electric field in the gate trench oxide and the electric field at the Schottky contact position in the blocking mode, so that the SBD integrated SiC UMOSFET has high blocking ability, and the high temperature and high field reliability of the device are greatly improved. At that same time, the relative position of the main trench (80), the main trench (80') and the p +-type buried layer (50) and the n-type current transport layer (40) are adjusted so that when the MOSFET is operated in the first quadrant, the conduction characteristic of the MOSFET does not degrade significantly; When the MOSFET is operated in the third quadrant, the conduction of the parasitic pn diode inthe MOSFET is effectively suppressed and the Schottky diode conduction mode is obtained. SiC UMOSFETs with integrated SBD have a lower total chip area than discrete SBD and MOSFET devices.
Owner:INST OF SEMICONDUCTORS - CHINESE ACAD OF SCI

Electrical resonance detection of particles and analytes in microfluidic channels

A conductivity counter and method of determining conductivity of a fluid sample are disclosed. The counter is suitable for high-speed, accurate counting of discrete events or items, such as cancer cells, passing through a fluid sample cell. A variable frequency current source is used to supply an excitation current to a sample cell connected in parallel with an inductance or the electrical equivalence of an inductance. This configuration can be accurately modeled as a parallel RLC circuit when the system is operated at a stable frequency. The current source frequency is tuned to the resonance frequency of the equivalent RLC circuit, which effectively eliminates the capacitive and inductive components of the impedance, leaving only purely resistive components. The output of the equivalent RLC circuit is connected to a high input impedance buffer amplifier and then to a phase sensitive detector, which detects the phase shift resulting from the equivalent RLC circuit. The output is filtered and a differencing amplifier is used to zero out the output signal due to the system components and the sample cell buffer solution prior to taking active readings. The remaining output signal is due to perturbations in the fluid sample, such as passing cancer cells. This output is sent to a high-gain output amplifier and then supplied to a suitable signal processing device or system, such as a computer.
Owner:BOARD OF SUPERVISORS OF LOUISIANA STATE UNIV & AGRI & MECHANICAL COLLEGE

Channel voltage dividing field effect tube and production method based on high-energy ion implantation mode

The invention discloses a channel voltage dividing field effect tube and production method based on a high-energy ion implantation mode. High-energy ion implantation equipment is used for carrying out gradual-deep implantation, an N-shaped channel is manufactured through diffusion for connecting a groove channel and a drain electrode, a similar-to-T-shaped structure formed by the N-shaped channel is of a 3D structure, a depletion zone formed between P and N is changed from a single vertical direction to a vertical direction and a horizontal direction, and accordingly the withstand voltage of the zone is greatly improved, the dosage concentration of the N channel can be increased, then the effect of lowering communicating resistance is achieved, and meanwhile P extends outwards and forms an obstruction between the bottom of a grid electrode and the drain electrode of the structure, and accordingly the capacitance between the bottom of the grid electrode and the drain electrode is nearly zero, the contacting part of the channel and the groove channel is small, so that the capacitance between the grid electrode and the drain electrode can be greatly removed, according to the two improvements, charging and discharging time during grid electrode opening and closing can be greatly shortened (Qgd can be greatly lowered), and accordingly opening and closing speed of an MOS tube is improved.
Owner:桂林斯壮桂微电子有限责任公司
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products