Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1105 results about "Arabidopsis sp." patented technology

Plants having enhanced yield-related traits and a method for making the same

The present invention relates generally to the field of molecular biology and concerns a method for enhancing various economically important yield-related traits in plants. More specifically, the present invention concerns a method for enhancing yield-related traits in plants by modulating expression in a plant of a nucleic acid encoding an ASPAT (Asparatate AminoTransferase) polypeptide. The present invention also concerns plants having modulated expression of a nucleic acid encoding an ASPAT polypeptide, which plants have enhanced yield-related traits relative to control plants. The invention also provides hitherto unknown ASPAT-encoding nucleic acids and constructs comprising the same, useful in performing the methods of the invention. Furthermore, the present invention relates generally to the field of molecular biology and concerns a method for increasing various plant yield-related traits by increasing expression in a plant of a nucleic acid sequence encoding a MYB91 like transcription factor (MYB91 ) polypeptide. The present invention also concerns plants having increased expression of a nucleic acid sequence encoding an MYB91 polypeptide, which plants have increased yield- related traits relative to control plants. The invention additionally relates to nucleic acid sequences, nucleic acid constructs, vectors and plants containing said nucleic acid sequences. Even furthermore, the present invention relates generally to the field of molecular biology and concerns a method for improving various plant growth characteristics by modulating expression in a plant of a nucleic acid encoding a GASA (Gibberellic Acid-Stimulated Arabidopsis). The present invention also concerns plants having modulated expression of a nucleic acid encoding a GASA, which plants have improved growth characteristics relative to corresponding wild type plants or other control plants. The invention also provides constructs useful in the methods of the invention. Yet furthermore, the present invention relates generally to the field of molecular biology and concerns a method for enhancing various economically important yield-related traits in plants. More specifically, the present invention concerns a method for enhancing yield-related traits in plants by modulating expression in a plant of a nucleic acid encoding an AUX/IAA (auxin/indoleacetic acid) polypeptide. The present invention also concerns plants having modulated expression of a nucleic acid encoding IAA polypeptide, which plants have enhanced yield-related traits relative to control plants. The invention also provides constructs comprising AUX/IAA-encoding nucleic acids, useful in performing the methods of the invention.
Owner:BASF PLANT SCI GMBH

Application of Arabidopsis transcription factor in breeding drought-resistant salt-tolerant rice

The invention relates to application of Arabidopsis transcription factor in breeding drought-resistant salt-tolerant rice. Nucleotide sequences of the Arabidopsis transcription factor MYB44 are shown in SEQ ID NO.1. Encoded protein sequences of the Arabidopsis transcription factor MYB44 are shown in SEQ ID NO.2. Conditions that are met for the nucleotide sequences and the encoded protein sequences include: first, DNA (deoxyribonucleic acid) sequences shown on the 88th site to the 1005th site in the sequence table SEQ ID NO.1, or the sequences highly homologous to the DNA sequences shown on the 88th site to the 1005th site in the SEQ ID NO.1; second, other encodable sequencecs with the same protein as the DNA sequences shown in the sequence table SEQ ID NO.2; third, the sequences the same functional as the DNA sequences shown on the 88th site to the 1005th site in the SEQ ID NO.1, or sub-segments contained in the highly homologous DNA sequences shown on the 88th site to the 1005th site in the SEQ ID NO.1. The Arabidopsis transcription factor is applied to breeding of the drought-resistant salt-tolerant rice. An expression vector of the MYB44 gene can be introduced into plant cells by biotechnology. Transforming hosts, available to use the expression vector containing the MYB44 gene, can be monocotyledons such as rice, corn and wheat. The Arabidopsis transcription factor is also applicable to dicotyledons such as tobacco and soybean. The Arabidopsis transcription factor is used to breed drought-resistant salt-tolerant plant varieties.
Owner:UNIV OF SCI & TECH OF CHINA

Method for increasing contents of tanshinone and salvianolic acid in salvia miltiorrhiza hairy root by using transgene AtMYC2

The invention relates to a method for increasing the contents of tanshinone and salvianolic acid in a salvia miltiorrhiza hairy root by using a transgene AtMYC2, belonging to the technical field of gene engineering. The method comprises the steps of constructing a high-efficiency expression vector of a plant by using an arabidopsis transcription factor AtMYC2, and carrying out genetic transformation on salvia miltiorrhiza leaves to obtain a gene AtMYC2 overexpressed transgenetic salvia miltiorrhiza hairy root; analyzing the expression of AtMYC2 in the transgenetic salvia miltiorrhiza hairy root and related genes in biosynthetic pathways of tanshinone and salvianolic acid through qRT-PCR; measuring the contents of tanshinone and salvianolic acid in the transgenetic salvia miltiorrhiza hairy root by using a high-performance liquid chromatography (HPLC); and measuring the antioxidant activity of tanshinone and salvianolic acid in the transgenetic salvia miltiorrhiza hairy root by using a DPPH free radical scavenging method. The invention provides the method for simultaneously increasing the contents of tanshinone and salvianolic acid in salvia miltiorrhiza hairy root and also provides a novel high-quality raw material for producing tanshinone and salvianolic acid with important clinic demands so as to have the positive promoting significance and application value for relieving the problem that the drug resources of tanshinone and salvianolic acid are short.
Owner:SHANGHAI NORMAL UNIVERSITY

Method for predicting N6-methyladenosine modification site in RNA based on stacking integration

The invention discloses a method for predicting an N6-methyladenosine modification site in RNA based on stacking integration, belonging to the field of systems biology. The method comprises the following steps: extracting RNA sequence features of three species, namely saccharomyces cerevisiae, homo sapiens and arabidopsis thaliana through six feature extraction methods, and conducting feature fusion to obtain an initial feature space of an original data set; performing dimensionality reduction on the initial feature space by using an elastic network, eliminating redundant and noise features, and reserving important features related to model classification so as to obtain an optimal feature set; inputting optimal feature subsets and corresponding category labels into stacking integration for model training, and evaluating the prediction performance of a model in combination with evaluation indexes to obtain a prediction model; and inputting a to-be-predicted RNA sequence in a test set into the prediction model, predicting the m6A site and outputting the m6A site. The prediction accuracy of the model on the test set reaches 92.30% and 87.06% respectively, and the model has good development potential in the aspect of cross-species prediction and is expected to become a useful tool for identifying the m6A site.
Owner:QINGDAO UNIV OF SCI & TECH

Application of corn CIPK42 protein and coding gene of corn CIPK42 protein in regulation and control of salt stress tolerance of plants

The invention relates to the technical field of plant genetic engineering, and particularly discloses an application of a corn CIPK42 protein and a coding gene of the corn CIPK42 protein in regulationand control of salt stress tolerance of plants. The corn ZmCIPK42 gene is found to be able to positively regulate and control the salt tolerance of the plants; and the salt tolerance of the plants can be effectively improved by increasing of the expression quantity of the ZmCIPK42 gene. According to the invention, transgenic corn and arabidopsis thaliana plants with ZmCIPK42 overexpression are constructed; and compared with a non-transgenic wild type, the transgenic corn and arabidopsis thaliana plants are significantly improved in salt tolerance and growth. Discovery of the salt-tolerant function of the ZmCIPK42 gene provides a novel gene target and resource for cultivation of salt-tolerant plant varieties, is of great significance to research of a salt-tolerant molecular mechanism of the plants, and lays a certain theoretical foundation for research of a salt stress response mechanism of the plants and a molecular mechanism of resisting adverse environments.
Owner:新疆农业科学院核技术生物技术研究所(新疆维吾尔自治区生物技术研究中心)
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products