Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

403 results about "Grid bias" patented technology

Grid bias is a DC voltage applied to electron tubes with three electrodes or more, such as triodes. The control grid of these devices is used to control the electron flow from the heated cathode to the positively charged anode. Bias point in small-signal applications is set to minimize distortion and achieve sufficiently low power draw. In high-power applications, biasing is typically set for maximum available output power or voltage, with a secondary target of either low distortion or high efficiency. In a typical voltage amplifier, including power stages of most audio power amplifiers, DC bias voltage is negative relative to cathode potential. Instant grid voltage should never rise above cathode potential to prevent grid-to-cathode currents that overload preceding amplifier stages and may cause severe even-order distortion. High transconductance tubes develop significant grid currents even with small negative bias; in these cases, maximum instant voltage ceiling is lowered to -1.0..-0.5 Volt. High efficiency Class B+ push-pull amplifiers operate at higher bias points.

Self-biasing CMOS PECL receiver with wide common-mode range and multi-level-transmit to binary decoder

A pseudo-emitter-coupled-logic (PECL) receiver has a wide common-mode range. Two current-mirror CMOS differential amplifiers are used. One amplifier has n-channel differential transistors and a p-channel current mirror, while the second amplifier has p-channel differential transistors and an n-channel current mirror. When the input voltages approach power or ground, one type of differential transistor continues to operate even when the other type shuts off. The outputs of the two amplifiers are connected together and each amplifier receives the same differential input signals. The tail-current transistor is self-biased using the current-mirror's gate-bias. This self biasing of each amplifier eliminates the need for an additional voltage reference and allows each amplifier to adjust its biasing over a wide input-voltage range. Thus the common-mode input range is extended using self biasing and complementary amplifiers. The complementary self-biased comparators can be used for receiving binary or multi-level-transition (MLT) inputs by selecting different voltage references for threshold comparison. Using the same reference on both differential inputs eliminates a second reference for multi-level inputs having three levels. Thus binary and MLT inputs can be detected and decoded by the same decoder.
Owner:DIODES INC

Ultralow temperature drift high power supply rejection ratio band-gap reference voltage source

The invention provides an ultralow temperature drift high power supply rejection ratio band-gap reference voltage source, and relates to the field of analog integrated circuit design. Mainly aimed at problems of temperature drift and power supply rejection ratio of an existing reference source, a comprehensive solution is provided. The band-gap reference voltage source comprises an independent current source circuit, a biasing circuit, a band-gap core circuit, and a PSRR enhancing circuit. The independent current source circuit is used to generate current which is basically independent of supply voltage to supply power. The bias circuit generates bias voltage used for operational amplification of the band-gap core circuit. The band-gap core circuit uses temperature compensation to obtain reference voltage. The power supply rejection ratio (PSRR) enhancing circuit provides grid bias voltage of the band-gap core circuit and improves power supply rejection ratio. Beneficial effects of the band-gap reference voltage source are that temperature coefficient of band-gap reference is greatly reduced, and power supply rejection ratio is improved. The band-gap reference voltage source is suitable to be used for a radio frequency identification power management module.
Owner:BEIJING UNIV OF TECH

Thin film field effect transistor type gas sensor and preparation method thereof

ActiveCN108447915AEnhanced room temperature gas-sensing effectImprove adsorption capacityTransistorMaterial analysis by electric/magnetic meansBottom gate bottom contactQuantum dot
The invention discloses a thin film field effect transistor type gas sensor and a preparation method thereof. The sensor is a thin film field effect transistor with a bottom gate top contact type structure or a bottom gate bottom contact type structure. A thin film field effect transistor with a bottom grid top contact structure is taken as an example. The transistor comprises a substrate, a gateinsulating layer and a channel active layer from bottom to top. The channel active layer is a quantum dot thin film. A source electrode and a drain electrode are deposited above the substrate. A gateelectrode is further led out of the substrate. The internal composition, the structure, the overall process of the corresponding preparation method and the parameters during all steps of the preparation method of the thin film field effect transistor type gas sensor are improved. The quantum dot thin film serves as a channel active layer and a gas sensitive layer at the same time, and the gas response of multiple parameters is comprehensively regulated by utilizing the grid bias voltage. As a result, the prepared gas sensor is high in sensitivity, low in power consumption and high in selectivity. The effect of detecting low-concentration target gases, such as NO2 and H2S, is achieved.
Owner:HUAZHONG UNIV OF SCI & TECH +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products