Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

36results about "Rare earth metal nitrates" patented technology

Method for recovering rare earth, aluminum and silicon from rare earth-containing aluminum and silicon wastes

The invention provides a method for recovering rare earth, aluminum and silicon from rare earth-containing aluminum and silicon wastes. The method comprises the following steps: 1, carrying out acid dipping on the rare earth-containing aluminum and silicon wastes by using an aqueous inorganic acid solution to obtain silicon-rich residues and an acid dipping solution containing rare earth ions and aluminum ions; 2, adding an alkaline substance to the acid dipping solution containing rare earth ions and aluminum ions to control the pH value of the acid dipping solution to be 3.5-5.2, and carrying out solid-liquid separation to obtain an aluminum hydroxide-containing precipitate and a rare earth-containing filtrate; and 3, reacting the aluminum hydroxide-containing precipitate with sodium hydroxide to obtain a sodium metaaluminate solution and aluminum and silicon residues, and using the rare earth-containing filtrate to prepare a rare earth compound product. Aluminum and rare earth are dissolved in the acid, segmented alkaline transfer is carried out, the aluminum ions are precipitated to obtain aluminum hydroxide and the rare earth ions which are separated from the aluminum hydroxide, and excess sodium hydroxide is added to convert aluminum hydroxide into the sodium metaaluminate solution, so simultaneous and high-efficiency recycling of the rare earth and aluminum is realized, the use amount of sodium hydroxide is greatly reduced, and the recovery cost is reduced.
Owner:GRIREM ADVANCED MATERIALS CO LTD

YSZ (yttria-stabilized zirconia)-based mixed potential type H2S sensor with La2NiO4 used as sensitive electrode and method for preparing YSZ-based mixed potential type H2S sensor

The invention discloses a YSZ (yttria-stabilized zirconia)-based mixed potential type hydrogen sulfide (H2S) sensor with La2NiO4 used as a sensitive electrode and a method for preparing the YSZ-basedmixed potential type hydrogen sulfide sensor, and belongs to the technical field of gas sensors. The YSZ-based mixed potential type hydrogen sulfide sensor is mainly used for detecting toxic gas H2S in industrial production and daily life. The YSZ-based mixed potential type hydrogen sulfide sensor sequentially comprises an Al2O3 ceramic plate with Pt heating electrodes, a YSZ-based plate, a Pt reference electrode and the La2NiO4 sensitive electrode. The reference electrode and the sensitive electrode are independently and symmetrically prepared at two ends of the upper surface of the YSZ-basedplate, and the lower surface of the YSZ-based plate is adhered with the Al2O3 ceramic plate with the Pt heating electrodes. The YSZ-based mixed potential type hydrogen sulfide sensor and the method have the advantages that the La2NiO4 with high electrochemical catalytic activity is used as the sensitive electrode, the quantities of citric acid and the like which are added in material synthesis procedures are changed, accordingly, the electrochemical catalytic activity of sensitive electrode materials can be enhanced, and effects of improving the sensitivity characteristics of the YSZ-based mixed potential type hydrogen sulfide sensor can be realized; a short temperature pulse is applied in sensor recovery procedure, accordingly, the recovery time of the YSZ-based mixed potential type hydrogen sulfide sensor can be shortened, and the purpose of enhancing the response and recovery characteristics of the YSZ-based mixed potential type hydrogen sulfide sensor can be achieved.
Owner:JILIN UNIV

Fluid extraction of metal and/or metalloid

A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a supercritical fluid solvent containing a chelating agent is described. The chelating agent forms chelates that are soluble in the supercritical fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is a fluorinated beta -diketone. In especially preferred embodiments the extraction solvent is supercritical carbon dioxide, and the chelating agent comprises a fluorinated beta -diketone and a trialkyl phosphate, or a fluorinated beta -diketone and a trialkylphosphine oxide. Although a trialkyl phosphate can extract lanthanides and actinides from acidic solutions, a binary mixture comprising a fluorinated beta -diketone and a trialkyl phosphate or a trialkylphosphine oxide tends to enhance the extraction efficiencies for actinides and lanthanides. The method provides an environmentally benign process for removing contaminants from industrial waste without using acids or biologically harmful solvents. The method is particularly useful for extracting actinides and lanthanides from acidic solutions. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process.
Owner:IDAHO RESARCH FOUNDATION INC

Preparation method of ammonium paratungstate composite powder comprising rare earth

The invention relates to a preparation method of ammonium paratungstate composite powder comprising rare earth. The preparation method comprises an alkaline method or an acidic method for obtaining ammonium tungstate solution as well as the impurity removal and evaporation crystallization of the ammonium tungstate solution. The method adds the rare-earth element into the pure ammonium tungstate solution in a form of rare-earth salt solution to obtain the ammonium paratungstate / rare-earth salt composite powder with the rare-earth element being sufficiently and uniformly distributed. The preparation method comprises the following steps: (1) preparing the ammonium tungstate solution; (2) preparing a uniform and stable rare-earth salt solution; (3) preparing a precursor composite solution; and(4) evaporating crystallizing, and obtaining the ammonium paratungstate composite powder comprising the rare earth. The rare-earth salt solution is directly added in the intermediate product ammoniumtungstate solution for preparing the APT, and then the ammonium paratungstate / rare-earth salt composite powder is obtained by virtue of evaporation crystallization, and the mass production of the ammonium paratungstate / rare-earth salt composite powder can be realized by slightly modifying the existing industrialized APT production line.
Owner:INST OF APPLIED PHYSICS JIANGXI ACADEMY OF SCI

A kind of preparation method of ammonium paratungstate composite powder containing rare earth

A method for preparing a rare earth-containing ammonium paratungstate composite powder, which includes alkali treatment or acid treatment to obtain an ammonium tungstate solution, impurity removal treatment of the ammonium tungstate solution, and evaporative crystallization, and the method adds rare earth elements in the form of a rare earth salt solution. into a pure ammonium tungstate solution to obtain an ammonium paratungstate / rare earth salt composite powder in which rare earth elements are fully and uniformly distributed. The method steps of the invention include: (1) preparing an ammonium tungstate solution; (2) preparing a homogeneous and stable rare earth salt solution; (3) preparing a precursor composite solution; (4) evaporating and crystallizing to obtain a rare earth-containing ammonium paratungstate composite powder. In the invention, the rare earth salt solution is directly added to the ammonium tungstate solution of the intermediate product for preparing APT, and then the ammonium paratungstate / rare earth salt composite powder is obtained by evaporation and crystallization, and the ammonium paratungstate / rare earth salt can be realized by slightly modifying the existing industrialized APT production line. Mass production of composite powders.
Owner:INST OF APPLIED PHYSICS JIANGXI ACADEMY OF SCI

Method for recovering rare earth, aluminum and silicon from rare earth-containing aluminum-silicon waste

The invention provides a method for recovering rare earth, aluminum and silicon from rare earth-containing aluminum and silicon waste. The method comprises: S1, acid leaching the rare earth-containing aluminum-silicon waste with an aqueous inorganic acid solution to obtain silicon-rich slag and an acid leaching solution containing rare earth and aluminum ions; S2, adding Alkaline substances and control the pH value of the pickling solution to 3.5 to 5.2, solid-liquid separation to obtain aluminum hydroxide-containing precipitates and rare earth-containing filtrates; S3, use aluminum hydroxide-containing precipitates to react with sodium hydroxide to obtain metaaluminic acid Sodium solution and aluminum silicon slag, and use the filtrate containing rare earth to prepare rare earth compound products. In the above method, aluminum and rare earth are dissolved with acid, and then by segmental alkali conversion, aluminum ions are precipitated to obtain aluminum hydroxide and rare earth ions are separated, and then excessive sodium hydroxide is added to convert aluminum hydroxide into sodium metaaluminate solution to realize Rare earth and aluminum are efficiently recycled at the same time, and the amount of sodium hydroxide is greatly reduced, which reduces the cost of recycling.
Owner:GRIREM ADVANCED MATERIALS CO LTD

a kind of la 2 nio 4 ysz-based hybrid potential type h for sensitive electrodes 2 s sensor and its preparation method

The invention discloses a YSZ (yttria-stabilized zirconia)-based mixed potential type hydrogen sulfide (H2S) sensor with La2NiO4 used as a sensitive electrode and a method for preparing the YSZ-basedmixed potential type hydrogen sulfide sensor, and belongs to the technical field of gas sensors. The YSZ-based mixed potential type hydrogen sulfide sensor is mainly used for detecting toxic gas H2S in industrial production and daily life. The YSZ-based mixed potential type hydrogen sulfide sensor sequentially comprises an Al2O3 ceramic plate with Pt heating electrodes, a YSZ-based plate, a Pt reference electrode and the La2NiO4 sensitive electrode. The reference electrode and the sensitive electrode are independently and symmetrically prepared at two ends of the upper surface of the YSZ-basedplate, and the lower surface of the YSZ-based plate is adhered with the Al2O3 ceramic plate with the Pt heating electrodes. The YSZ-based mixed potential type hydrogen sulfide sensor and the method have the advantages that the La2NiO4 with high electrochemical catalytic activity is used as the sensitive electrode, the quantities of citric acid and the like which are added in material synthesis procedures are changed, accordingly, the electrochemical catalytic activity of sensitive electrode materials can be enhanced, and effects of improving the sensitivity characteristics of the YSZ-based mixed potential type hydrogen sulfide sensor can be realized; a short temperature pulse is applied in sensor recovery procedure, accordingly, the recovery time of the YSZ-based mixed potential type hydrogen sulfide sensor can be shortened, and the purpose of enhancing the response and recovery characteristics of the YSZ-based mixed potential type hydrogen sulfide sensor can be achieved.
Owner:JILIN UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products