Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

477results about How to "Long luminous life" patented technology

Quantum dot luminescent layer and device, and preparation methods thereof, luminescence module and display device

The present invention discloses a quantum dot luminescent layer and device, and preparation methods thereof, a luminescence module and a display device. The preparation method of the quantum dot luminescent layer comprises the steps: the quantum dots having the surfaces coated with ligand are dissolved in solvent to obtain the quantum dot solution; the quantum dot solution is deposited on the substrate or a function layer by employing the solution method to obtain a quantum dot luminescent layer; the quantum dot luminescent layer is arranged in a vacuum cavity, and organic metal compounds are pumped in to process for 0.5-30 mins, wherein the pressure in the cavity is 0.01-1mbar, the partial pressure of the organic metal compounds after gasification is 0.001-0.1mbar, the temperature in the cavity is 10-25 DEG C; and the quantum dot luminescent layer is taken out to obtain the quantum dot crosslinking luminescent layer. The quantum dot film is not only uniform flat and has a stable film, so that the quantum dot film is difficult to be redissolved to take away or wash away by the solvent when the subsequent other function layers are deposited so as to effectively improve the luminescence uniformity and the stability of the QLED.
Owner:TCL CORPORATION

Organic electroluminescent device

An organic electroluminescent device comprising an anode, a cathode, a light emitting layer that is disposed between the anode and the cathode and contains a first light emitting layer material containing a phosphorescent compound and a second light emitting layer material containing a charge transporting polymer compound (that is, a light emitting layer containing a first light emitting layer material and a second light emitting layer material), and a hole transporting layer that is disposed between the anode and the light emitting layer so as to be adjacent to the light emitting layer and is composed of a hole transporting polymer compound, wherein the lowest excitation triplet energy T1e (eV) of the first light emitting layer material, the lowest excitation triplet energy T1h (eV) of the second light emitting layer material and the lowest excitation triplet energy T1t (eV) of the hole transporting polymer compound satisfy the following formulae (A) and (B):
T1e≦T1h  (A)
T1t−T1e≦0.10  (B).
An organic electroluminescent device comprising an anode and a cathode, and a hole transporting layer and a light emitting layer disposed between the anode and the cathode, wherein the hole transporting layer contains 1) a mixture of 2,2′-bipyridine and/or 2,2′-bipyridine derivative and a non-2,2′-bipyridinediyl group-containing hole transporting polymer compound, 2) a 2,2′-bipyridinediyl group-containing polymer compound having a constitutional unit composed of an unsubstituted or substituted 2,2′-bipyridinediyl group, and at least one constitutional unit selected from the group consisting of constitutional units composed of a divalent aromatic amine residue and constitutional units composed of an unsubstituted or substituted arylene group, or a combination thereof.
Owner:SUMITOMO CHEM CO LTD

Perovskite LED device based on surface ligand control and preparation method thereof

The invention relates to a method for preparing a perovskite LED device based on surface ligand control, including the following steps: applying an organic solution of a hole injection layer materialto the surface of a conductive substrate, and forming a hole injection layer after annealing; dissolving cesium bromide, lead bromide and phenethylamine bromide in an organic solvent under the effectof a 3-(decyl dimethyl ammonium) propane-1-sulfonic acid inner salt surfactant to obtain a perovskite precursor solution, applying the perovskite precursor solution to the surface of the hole injection layer and obtaining a perovskite film after annealing; treating the surface of the perovskite film with an alkylamine organic solution to form a light-emitting layer; and successively preparing an electron transport layer, an electron injection layer and a metal cathode electrode on the surface of the light-emitting layer. The method of the invention is simple and convenient, has a wide range ofmaterials and good repeatability, and can achieve the device performance. Through surface ligand exchange, the flatness and uniformity of the perovskite film are improved, the formation of defects iseffectively suppressed, and the overall performance of the device is significantly improved.
Owner:SUZHOU UNIV

Benzanthracene organic electroluminescent material, and preparation method and application thereof

The invention relates to a benzanthracene organic electroluminescent material, and a preparation method and application thereof. The invention solves the technical problems that the anthracene luminescent material in the prior art can not satisfy the operating requirement for OLEDs (organic light-emitting diodes). The benzanthracene organic electroluminescent material provided by the invention is prepared by reacting R1/R2-substituted amine compound and benzanthracene bromine substitute. Due to the introduction of methyl group in the 10 site, the material has the advantages of higher solubility and favorable film-forming properties. The preparation method provided by the invention has the advantages of simple synthesis and purification processes and low cost, and can satisfy the demands of industrialized development. Compared with the device prepared by using arylamino-substituted anthracene as the luminescent layer, the device prepared from the material provided by the invention has obviously higher luminescence efficiency and longer half-time service life; the luminescence efficiency is 25 Lm/w, and the half-time service life is 20000 hours; and thus, the material can satisfy the operating requirements for OLEDs.
Owner:JILIN OPTICAL & ELECTRONICS MATERIALS
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products