Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

60 results about "Super-resolution microscopy" patented technology

Super-resolution microscopy, in light microscopy, is a term that gathers several techniques, which allow images to be taken with a higher resolution than the one imposed by the diffraction limit. Due to the diffraction of light, the resolution in conventional light microscopy is limited, as stated (for the special case of widefield illumination) by Ernst Abbe in 1873. In this context, a diffraction-limited microscope with numerical aperture N.A. and light with wavelength λ reaches a lateral resolution of d = λ/(2 N.A.) - a similar formalism can be followed for the axial resolution (along the optical axis, z-resolution, depth resolution). The resolution for a standard optical microscope in the visible light spectrum is about 200 nm laterally and 600 nm axially. Experimentally, the attained resolution can be measured from the full width at half maximum (FWHM) of the point spread function (PSF) using images of point-like objects. Although the resolving power of a microscope is not well defined, it is generally considered that a super-resolution microscopy technique offers a resolution better than the one stipulated by Abbe.

Method and device for two-photon fluorescence stimulated emission differential super-resolution microscopy

The invention discloses a method for two-photon fluorescence stimulated emission differential super-resolution microscopy. The method includes the steps that (1) after being collimated, pulsed laser beams are converted into linear polarized light and polarization modulation is conducted on the linear polarized light, so that radial polarized light is obtained; (2) the radial polarized light is converted into circular polarized light and projected onto a sample to be tested, two-photon stimulated emission is conducted, fluorescence is collected, and therefore first signal light intensity I1 is obtained; (3) polarization modulation is conducted on the linear polarized light obtained in the step (1) and the linear polarized light is converted into tangential polarized light; (4) the tangential polarized light is converted into circular polarized light and projected onto the sample to be tested, two-photon stimulated emission is conducted, fluorescence is collected, and therefore second signal light intensity I2 is obtained; (5) effective signal light intensity I is calculated according to a formula I=I1-gammaI2 , so that super-resolution imaging is achieved. The invention further discloses a device for two-photon fluorescence stimulated emission differential super-resolution microscopy. The device is simple, free of light division, low in light power, capable of weakening the photobleaching effect, higher in resolution and larger in imaging depth.
Owner:ZHEJIANG UNIV

Random positioning super-resolution microscopy method and device based on fluorescence-emission kill mechanism

The invention discloses a random positioning super-resolution microscopy method and device based on a fluorescence-emission kill mechanism. The method includes the following steps: coaxial and common-path exciting light and restraining light are simultaneously focused on a sample; the position on the sample, with the stimulated fluorescence-emission characteristic, randomly emits fluorescent light; fluorescent signals are collected to generated a sparse fluorescent distribution image; diffraction spots are positioned in a unimolecule manner, and the final product is obtained after different fluorescent light positioning images are synthesized. The device includes a first laser light source, a second laser light source, a reflector, a first dichroic mirror, a kohler mirror group, a second dichroic mirror, a microobjective, a sample, an optical filter, a field lens, an ocular, a wide field sensing element and a computer. The invention has the advantages that the resolution ratio and fineness are high, 20 nm crosswise super-resolution images can be obtained; the structure is simple, and the cost is low; irreversible damage of intensive laser or fluorescence photobleaching to samples is reduced, and repeating utilization ratio of samples is increased; the function extensibility is strong.
Owner:CHINA JILIANG UNIV +1

Real-time fluorescence radiation differential super-resolution microscopy method based on parallel spot scanning and device

ActiveCN109632756AFast sampling speedAchieve super-resolution dynamic microscopyFluorescence/phosphorescenceLight beamUltimate tensile strength
The invention discloses a real-time fluorescence radiation differential super-resolution microscopy method based on parallel spot scanning and device. In the method, a laser beam is divided to S-polarized light and P-polarized light, the S-polarized light is modulated to a circularly-polarized solid spot, and the P-polarized light is firstly modulated to eddy polarized light and is then modulatedto a circularly-polarized hollow spot; solid spot excitation light and hollow spot excitation light are staggered for at least 200 nm on an object plane; the solid spot excitation light and the hollowspot excitation light are used to perform two-dimensional scanning on a fluorescence sample simultaneously, and a positive confocal fluorescence intensity map obtained by solid spot modulation and anegative confocal fluorescence intensity map obtained by hollow spot modulation are obtained; and the two fluorescence intensity maps are subjected to shift matching. As two spots are adopted for simultaneous scanning, in comparison with the method of switching a modulation spot back and forth by the traditional fluorescence emission differential microscopy system, the sampling speed is more thantwice the traditional speed, the super-resolution dynamic microscopy effects under the confocal scanning speed can be realized, and the imaging speed can be improved significantly.
Owner:ZHEJIANG UNIV

Method and device for Fourier domain iterative splicing super-resolution microscopy based on surface wave illumination

The invention discloses a method for Fourier domain iterative splicing super-resolution microscopy based on surface wave illumination. The method comprises the following steps of (1) by changing the illumination angle of incident illumination light, stimulating the surface wave which is propagated along different directions at an interface of a sample and air; (2) enabling a surface wave illumination sample to generate frequency spectrum shifting along the corresponding transverse wave vector, and shifting a high-efficiency component of an object to the lens low objective low passband range; (3) enabling a CCD (charge coupled device) to shoot up an image corresponding to each illumination angle, substituting into a Fourier domain iterative splicing (FP (Fabry-Perot)) algorithm, and finally reconstructing the strength and phase distribution of the complicated sample. The invention also discloses a device for the Fourier domain iterative splicing super-resolution microscopy based on the surface wave illumination. The method has the advantages that the restored quantitative phase does not need to be obtained by interference; when the etching depth of the restored etching grid sample is calculated, the accuracy is verified through AFM (atomic force microscope) detection; the broad application prospect is realized in the material and life sciences.
Owner:ZHEJIANG UNIV

Super-resolution microscopy methods and systems enhanced by dielectric microspheres or microcylinders used in combination with metallic nanostructures

Methods and systems for the super-resolution imaging can make visible strongly subwavelength feature sizes (even below 100 nm) in the optical images of biomedical or any nanoscale structures. The main application of the proposed methods and systems is related to label-free imaging where biological or other objects are not stained with fluorescent dye molecules or with fluorophores. This label-free microscopy is more challenging as compared to fluorescent microscopy because of the poor optical contrast of images of objects with subwavelength dimensions. However, these methods and systems are also applicable to fluorescent imaging. Their use is extremely simple, and it is based on application of the microspheres or microcylinders or, alternatively, elastomeric slabs with embedded microspheres or microcylinders to the objects which are deposited on the surfaces covered with thin metallic layers or metallic nanostructures. The mechanism of imaging involved use of the plasmonic near-fields for illuminating the objects and virtual imaging of these objects through microspheres or microcylinders. These methods and systems do not require use of fragile probe tips and slow point-by-point scanning techniques. These methods and systems can be used in conjunction with any types of microscopes including upright, inverted, fluorescence, confocal, phase-contrast, total internal reflection and others. Scanning the samples can be performed using micromanipulation with individual spheres or cylinders or using translation of the slabs. These methods and systems are applicable to dry, wet and totally liquid-immersed samples and structures.
Owner:THE UNITED STATES OF AMERICA AS REPRESETNED BY THE SEC OF THE AIR FORCE

Multiband fluorescence loss method, multicolor super-resolution imaging method and device

ActiveCN107831147ALow costHigh efficiency light control lossMicroscopesFluorescence/phosphorescenceEnergy migrationHigh energy
The invention discloses a multiband fluorescence loss method, a multicolor super-resolution imaging method and a device. Multiband fluorescence refers to up-conversion fluorescence emitted in the process of electrons reaching a Tm<3+> high energy level and then sequentially migrating energy to the Gd<3+> ions and shell activated ions X<3+> in the Yb<3+>/Tm<3+> sensitization and up-conversion process of an other activated ions-doped shell wrapping a NaGdF4:Yb<3+>/Tm<3+> core. The up-conversion fluorescence can be different by changing the activated ions by means of the same sensitization, up-conversion and energy migration process. The fluorescence loss process is the process of loss of electrons of the Tm<3+> high energy level and the loss of multiband fluorescence emitted during the transfer of the Tm<3+> high energy level from Gd<3+> to X<3+>, caused by the stimulated emission transition of intermediate energy level electrons to a low energy level in the up-conversion process by using the stimulated emission of laser with the wavelength nearby 810 nm between the Tm<3+> matching energy levels. Nano-particles of different activated ions are synthesized based on the fluorescence loss method, and multicolor super-resolution microscopy imaging is realized using the same pair of excitation light and hollow loss light. An optical system is greatly simplified, and the cost of the system is reduced.
Owner:SOUTH CHINA NORMAL UNIVERSITY

Multi-mode optical fiber super-resolution imaging device based on wavefront shaping and light spot correction method thereof

The invention discloses a multi-mode optical fiber super-resolution imaging device based on wavefront shaping and a light spot correction method thereof, and belongs to the field of super-resolution microscopy; after quenching light generated by a first laser and excitation light generated by a second laser are injected into a multi-mode optical fiber, the light spot at the exit end of the multi-mode optical fiber is imaged on a camera of a correction system, a modulation signal on a spatial light modulator is continuously converted, the light spot intensity information acquired by the camerais taken as the data base of a multi-mode optical fiber mode correlation correction method to correct the modulated signals of the spatial light modulator, at the exit end of the multi-mode optical fiber, Elie spot-shaped excitation light spots and bread ring-shaped quenching light spots are generated. The quenching light and the excitation light are moved to scan a sample, and the imaging of different depths in the biological tissue sample is achieved by moving the optical fiber, so that the imaging quality reduction caused by scattering in the biological tissue imaging process is overcome, high resolution and large imaging depth are achieved, so that the method is widely applied in biomedicine.
Owner:ZHEJIANG UNIV

Super-resolution microscopy method and device based on speckle illumination

ActiveCN107202780ANo need to control the shape of the illumination speckleEasy to operateFluorescence/phosphorescenceWide fieldImage resolution
The invention discloses a super-resolution microscopy method based on speckle illumination. The method comprises the following steps: modulating laser beam, focusing the laser beam onto a sample to be tested, so as to form a speckle illumination pattern, and collecting fluorescence emitted by the sample to be tested, so as to obtain a fluorescence intensity image; changing the speckle illumination pattern, so as to obtain a plurality of fluorescence intensity images under different speckle illumination patterns; adding all the fluorescence intensity images together to obtain an image serving as a wide field image, and performing deconvolution on the wide field image, so as to obtain the initial estimation of the sample; calculating an initial illumination image through a gradient descent algorithm according to the obtained initial estimation; working out a sample image with higher resolution on the basis of an obtained object image and an initial illumination image through an FP algorithm; taking the worked out sample image as an estimated value of the sample, repeating iteration till iteration is accomplished, so as to obtain a super-resolution image. The invention further discloses a super-resolution microscopy device based on speckle illumination.
Owner:ZHEJIANG UNIV

Super-resolution microscopy methods and systems enhanced by dielectric microspheres or microcylinders used in combination with metallic nanostructures

Methods and systems for the super-resolution imaging can make visible strongly subwavelength feature sizes (even below 100 nm) in the optical images of biomedical or any nanoscale structures. The main application of the proposed methods and systems is related to label-free imaging where biological or other objects are not stained with fluorescent dye molecules or with fluorophores. This label-free microscopy is more challenging as compared to fluorescent microscopy because of the poor optical contrast of images of objects with subwavelength dimensions. However, these methods and systems are also applicable to fluorescent imaging. Their use is extremely simple, and it is based on application of the microspheres or microcylinders or, alternatively, elastomeric slabs with embedded microspheres or microcylinders to the objects which are deposited on the surfaces covered with thin metallic layers or metallic nanostructures. The mechanism of imaging involved use of the plasmonic near-fields for illuminating the objects and virtual imaging of these objects through microspheres or microcylinders. These methods and systems do not require use of fragile probe tips and slow point-by-point scanning techniques. These methods and systems can be used in conjunction with any types of microscopes including upright, inverted, fluorescence, confocal, phase-contrast, total internal reflection and others. Scanning the samples can be performed using micromanipulation with individual spheres or cylinders or using translation of the slabs. These methods and systems are applicable to dry, wet and totally liquid-immersed samples and structures.
Owner:THE UNITED STATES OF AMERICA AS REPRESETNED BY THE SEC OF THE AIR FORCE
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products