Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

104results about How to "Minimize risk of damage" patented technology

Unitized electrode with three-dimensional multi-site, multi-modal capabilities for detection and control of brain state changes

An electrode with three-dimensional capabilities for detection and control of brain state changes of a subject. The electrode includes a disk portion having an upper surface and a lower surface, and a shaft portion secured to and extending perpendicularly outwardly from the lower surface of the disk portion; the shaft portion having an outer surface. The disk portion and shaft portion may include one or more recording or stimulating contact surfaces structured to operatively interact with the brain of a subject. Insulating material isolates each of the recording or stimulating contact surfaces from each other. At least one conductor operatively and separately connect each of the recording or stimulating contact surfaces in communication with external apparatus. The disk portion and shaft portion are structured relative to each other to operatively provide support and anchoring for each other while providing three-dimensional capabilities for detection and control of brain state changes of a subject. Modified embodiments include insertible/retractable electrode wires, both contained in channels and sheathed in axially displaceable cannulae; activating mechanisms for inserting/retracting the electrode wires and/or cannulae; and multiple shaft portions.
Owner:FLINT HILLS SCI L L C

Unitized electrode with three-dimensional multi-site, multi-modal capabilities for detection and control of brain state changes

An electrode with three-dimensional capabilities for detection and control of brain state changes of a subject. The electrode includes a disk portion having an upper surface and a lower surface, and a shaft portion secured to and extending perpendicularly outwardly from the lower surface of the disk portion; the shaft portion having an outer surface. The disk portion and shaft portion may include one or more recording or stimulating contact surfaces structured to operatively interact with the brain of a subject. Insulating material isolates each of the recording or stimulating contact surfaces from each other. At least one conductor operatively and separately connect each of the recording or stimulating contact surfaces in communication with external apparatus. The disk portion and shaft portion are structured relative to each other to operatively provide support and anchoring for each other while providing three-dimensional capabilities for detection and control of brain state changes of a subject. Modified embodiments include insertible / retractable electrode wires, both contained in channels and sheathed in axially displaceable cannulae; activating mechanisms for inserting / retracting the electrode wires and / or cannulae; and multiple shaft portions.
Owner:FLINT HILLS SCI L L C

Electrostatic chuck

An electrostatic chuck is provided having a plurality of small electrostatic structures for holding an electrically conductive workpiece forming a plate of a capacitor. Each electrostatic structure includes a first thermally conductive single-crystal dielectric sheet, and a first electrode in sheet form sandwiched between the first dielectric sheet and a second dielectric surface. The workpiece, typically a conductive or semiconductive wafer, is juxtaposed to the first dielectric sheet of each electrostatic structure and forms a second electrode. The second dielectric sheet, if thick, is used as a thermally conducting base plate which can be attached to a low pressure reactor. If the second dielectric is a thin sheet, then it is mounted to a thermally conductive metal base plate through which heat can be controllably conducted. The resultant electrostatic structure may be brazed to the metal base plate if the thermal expansion characteristics of the two elements are sufficiently matched. The first thermally conductive dielectric sheet is preferably formed of sapphire (Al2O3), which is sufficiently thermally conductive to allow for rapid heat transfer between the base plate and the workpiece. The first electrodes of different electrostatic structures are held at different electrical potentials (typically of several thousand volts difference) and a charge is maintained by this potential difference between selected electrostatic structures.
Owner:SHERMAN ARTHUR

Installation method and recovery method for offshore wind turbine

The present invention provides a method for installation of an offshore wind turbine, comprising a step for prefabrication of a foundation, a step for installation on the dock, a step for transportation and a step for offshore installation. The foundation provides buoyant force and uprighting force to the entire structure so as to keep it upright without external forces; the step for installation on the dock comprises assembling into the complete set, and finishing the test in a state of complete set; in the step for transportation, the complete set is transported to the offshore site in a way of floating on the water; the step for offshore installation comprises sinking the complete set onto the sea bed by gravity on the offshore site, and fixing the foundation to finish the installation. The present invention also provides a method for recovery of an offshore wind turbine, which is performed generally in steps reversed to the method for installation. The one-step installation and disassembly for the complete set can be realized according to the method of the present invention, which has low risk for damaging the wind turbine complete set, with convenience and high efficiency, and greatly reduces the cost, and moreover, is environment-friendly.
Owner:DAODA (SHANGHAI) WIND POWER INVESTMENT CO LTD

Ultra-Miniature Electrochemical Cell And Fabrication Method

An ultra-miniature electrochemical cell and related fabrication method. The cell includes a cell case having a first cell electrode attached to an inside wall thereof. An electrode-header assembly is also disposed in the cell case. The electrode-header assembly includes an electrode plug providing a second cell electrode, a header assembly attached to the cell case, and a current collector embedded in the electrode plug and extending through the header assembly. The cell further includes an electrolyte-carrying separator disposed in cell case between the first and second electrodes. Advantageously, the second cell electrode may be fabricated using a punching process and joined to the current collector while constrained within tooling in order to minimize the risk of damage to the electrode during handling. This method facilitates the efficient, repeatable fabrication of small uniform electrodes and subsequent attachment of the electrodes to their associated current collectors. The method thus enables the production of electrodes having single millimeter thicknesses or less. Moreover, the method is compatible with many primary cell electrode materials, thereby allowing the production of primary power sources having a form factor and dimensions suitable for percutaneous injection.
Owner:GENTCORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products