Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

132results about How to "Pressure resistance" patented technology

Auxetic stents

Stents of the type used to treat and prevent localized flow constriction in body vessels are based upon negative Poisson's ratio (NPR) structures. An auxetic stent constructed in accordance with this invention comprises a tubular structure having two ends defining a length with a central longitudinal axis and an axial view defining a cross section. The tubular structure is composed of a plurality of unit cells with two different configurations, called V-type and X-type. In V-type auxetic stents, each unit cell comprises a pair of side points A and B defining a width, a first pair of members interconnecting points A and B and intersecting at a point C forming a first V shape, and a second pair of members interconnecting points A and B and intersecting at a point D forming a second V shape. In X-type auxetic stents, each unit cell comprises eight points from A to H defining an outline of the unit cell. Eight straight or curved members interconnecting points A and B, B and C, C and D, C and E, E and F, F and G, G and H, G and A, respectively, forming the X-type unit cell. In both configurations, the unit cells are connected in rows and columns, such that compression of the structure between the two ends thereof causes the cross section of the structure to shrink in size. The auxetic structure configurations invented can also be used, with similar dimensions or significantly different dimensions, for other applications, such as in a nano-structural device, a tubal fastener design, or in an application associated with a large oil pipe or other pipelines.
Owner:MKP STRUCTURAL DESIGN ASSOCS

Extruded cellulose-polymer composition and system for making same

The present invention is directed to a device for the production of a cellular wood plastic composite material comprised of an orifice that conducts the composite material from the adapter of the extruder to the transition die plate in such a manner that a uniform flow of material reaches the transition die plate; a transition die plate that further directs the flow of material to a flow restriction die plate in a manner ensuring that equal amounts of material are delivered to all areas of the flow restriction die plate; a flow restriction die plate that provides sufficient resistance to material flow to increase the melt pressure of the portion of the material that is upstream in relation to the flow restriction die plate and controls the temperature increase caused by this restriction by dividing the flow into numerous suitably sized and shaped streams; a compression die plate that fuses the separate streams issuing from the flow restriction die plate into a single stream of material and maintains the melt pressure at a level which will prevent premature development of cells in the material; a shaping die plate that is designed to shape the material in such a way that the fully expanded material will approximate the shape of the desired profile and to control the rate of cell development and expansion so that large numbers of uniform cells are produced.
Owner:CPG INT

Blow out protector valve employing ball baffle assembly for use with high-pressure fluids

A Ball Baffle Blowout Preventer (BBBOP) (102) or shut-off valve generally comprises a housing (106) and a baffle (108) secured within the housing and containing a plurality of holes. The housing is mounted in the path of the well pipe but the holes in the baffle allow normal production fluid to pass. One or more ball dispensing mechanisms (BDM) (110, 112) are connected to the housing. Each BDM contains a plurality of balls (114) and one or more valves (196). When a blowout condition occurs, a plurality of balls (114) are released beneath baffle (108) and are carried upward by the upwardly gushing fluid to plug the holes. The balls (114) are held in place by the pressure differential below and above the baffle. The balls can be removed from the baffle by the forcing fluid down the well. All operations can be controlled undersea by remotely operated vehicles (ROVs). A plurality of BBBOPs can be stacked and each can be set to operate at a different pressure and flow rates. The BBBOP may also include a Threshold Pressure Detection Unit for actuating the BDM that requires no electro-mechanical components; it uses only the energy of pressurized fluids in a well bore. The manual and self-actuating BDMs are not disabled by slow leaks of ambient well pressures past the hydraulic seals used therein. In another embodiment an additional baffle (250) can be provided below the first baffle (108) to contain the balls after they are released from the first baffle.
Owner:WATTENBURG WILLARD HARVEY
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products