Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

279results about How to "Constant thickness" patented technology

Printed circuit board with embedded capacitors therein, and process for manufacturing the same

Disclosed herein are a printed circuit board with embedded capacitors therein and a process for manufacturing the printed circuit board. The embedded capacitors are formed by applying a photosensitive insulating resin to a printed circuit board inner layer, and applying a high dielectric polymer capacitor paste thereto. The process for manufacturing a printed circuit board with embedded capacitors therein comprises the steps of: i) laminating photoresist dry films to a copper clad FR-4, exposing to light and developing the dry films, and etching copper foils of the copper clad FR-4 to form bottom electrodes for forming capacitors; ii) applying a photosensitive insulating resin to the surfaces of the bottom electrodes, and exposing to light and developing to etch the photosensitive insulating resin; iii) applying a capacitor paste to the etched regions and curing the capacitor paste; iv) plating the upper regions of the cured capacitor paste and the photosensitive insulating resin using an electroless copper plating process to form copper foil layers for top electrodes; v) laminating photosensitive dry films to the copper foil layers for top electrodes, and exposing to light and developing the photosensitive dry films to etch regions of the dry films except for the copper foil layers where the top electrodes are to be formed; and vi) etching the regions of the dry films except for the copper foil layers where the top electrodes are to be formed, and the dry films formed on the top electrodes are removed so that the capacitor paste is discretely positioned between the top electrodes and the bottom electrodes to form discrete capacitors.
Owner:SAMSUNG ELECTRO MECHANICS CO LTD

Pressure sensor

In manufacturing a pressure sensor a recess that will form part of the sensor cavity is formed in a lower silicon substrate. An SOI-wafer having a monocrystalline silicon layer on top of a substrate is bonded to the lower silicon substrate closing the recess and forming the cavity. The supporting substrate of the SOI-wafer is then etched away, the portion of the monocrystalline layer located above the recess forming the sensor diaphragm. The oxide layer of the SOI-wafer here acts as an “ideal” etch stop in the case where the substrate wafer is removed by dry (plasma) or wet etching using e.g. KOH. This is due to high etch selectivity between silicon and oxide for some etch processes and it results in a diaphragm having a very accurately defined and uniform thickness. The cavity is evacuated by forming a opening to the cavity and then sealing the cavity by closing the opening using LPCVD. Sensor paths for sensing the deflection of the diaphragm are applied on the outer or inner surface of the diaphragm. The monocrystalline diphragm gives the sensor a good long-term stability. Also the sensor path can be made of monocrystalline material, this giving the sensor even better good long-term characteristics. An increased sensitivity can be obtained by making active portions of the sensor paths freely extending, unsupported by other material of the pressure sensor, by suitable etching procedures.
Owner:SILEX MICROSYST

Pressure sensor

In manufacturing a pressure sensor a recess that will form part of the sensor cavity is formed in a lower silicon substrate. An SOI-wafer having a monocrystalline silicon layer on top of a substrate is bonded to the lower silicon substrate closing the recess and forming the cavity. The supporting substrate of the SOI-wafer is then etched away, the portion of the monocrystalline layer located above the recess forming the sensor diaphragm. The oxide layer of the SOI-wafer here acts as an “ideal” etch stop in the case where the substrate wafer is removed by dry (plasma) or wet etching using e.g. KOH. This is due to high etch selectivity between silicon and oxide for some etch processes and it results in a diaphragm having a very accurately defined and uniform thickness. The cavity is evacuated by forming a opening to the cavity and then sealing the cavity by closing the opening using LPCVD. Sensor paths for sensing the deflection of the diaphragm are applied on the outer or inner surface of the diaphragm. The monocrystalline diphragm gives the sensor a good long-term stability. Also the sensor path can be made of monocrystalline material, this giving the sensor even better good long-term characteristics. An increased sensitivity can be obtained by making active portions of the sensor paths freely extending, unsupported by other material of the pressure sensor, by suitable etching procedures.
Owner:SILEX MICROSYST
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products