Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

2244 results about "Aluminum electrolytic capacitor" patented technology

Aluminum electrolytic capacitors are polarized electrolytic capacitors whose anode electrode (+) is made of a pure aluminum foil with an etched surface. The aluminum forms a very thin insulating layer of aluminium oxide by anodization that acts as the dielectric of the capacitor. A non-solid electrolyte covers the rough surface of the oxide layer, serving in principle as the second electrode (cathode) (-) of the capacitor. A second aluminum foil called “cathode foil” contacts the electrolyte and serves as the electrical connection to the negative terminal of the capacitor.

600V extra-high voltage aluminum electrolyte capacitor working electrolyte and preparation and application thereof

The invention relates to a 600V extra-high voltage aluminum electrolyte capacitor working electrolyte and a preparation and an application thereof; the working electrolyte comprises the following materials: 44.5-80.3% of main solvent, 5-15% of auxiliary solvent, 8-15% of solute, 0.5-2.5% of sparking voltage enhancer, 6-10% of stabilizer and 0.2-3% of hydrogen absorbent; the preparation method comprises the following steps: mixing the main solvent and the auxiliary solvent evenly, heating the mixture to 60-90 DEG C; adding sparking voltage enhancer, heating the mixture to 135-155 DEG C; cooling the heated mixture to 65-80 DEG C by circulating water, adding the solute and the stabilizer, heating the product to 105-135 DEG C; finally, adding the hydrogen absorbent and natural cooling to obtain the working electrolyte. Proper sparking voltage enhancer and stabilizer are added in the electrolyte to improve the high voltage resistant and high temperature resistant properties of electrolyte and to ensure the electrolyte to have low aerogenesis property; the aluminum electrolyte capacitor prepared by using the electrolyte has long service life and high voltage resistant property, and can not be broken down as the sparking voltage of the electrolyte is unstable.
Owner:NANTONG JIANGHAI CAPACITOR CO LTD

Electrolyte for flame-retardant wide-temperature high-voltage aluminum electrolytic capacitor and preparation method thereof

The invention provides a working electrolyte for a flame-retardant wide-temperature high-voltage aluminum electrolytic capacitor, which comprises the following components in percentage by weight: 45-80% of main solvent, 0.1-5% of oxidation film stabilizer, 5-15% of secondary solvent, 0.2-3% of hydrogen absorption agent, 5-10% of solute, 5-15% of flame retardant and 5-15% of spark voltage increasing agent. The invention also provides a preparation method of the electrolyte and application of the electrolyte in preparation of a high-voltage electrolytic capacitor. In the electrolyte, appropriate solvent combination is adopted, thus the wide temperature from -40 DEG C to 105 DEG C is realized; a composite solute of an organic carboxylate with a branched chain and a straight-chain carboxylate with a long carbon chain is adopted, thus the stability is ensured, and the cost is controlled; the appropriate spark voltage increasing agent, oxidation film stabilizer and hydrogen absorption agent are added, thus the spark voltage of the electrolyte is increased, and the characteristic parameters of the aluminum electrolytic capacitor are not deteriorated after the aluminum electrolytic capacitor is used for a long time; and the flame retardant is added, thus the aluminum electrolytic capacitor is difficult to burn after striking fire.
Owner:SHENZHEN ZHONGYUAN ELECTRONICS

650V-700V extra-high-voltage aluminum electrolytic capacitor, working electrolyte and preparation method thereof

The invention discloses working electrolyte of a 650V-700V extra-high-voltage aluminum electrolytic capacitor. The working electrolyte of the 650V-700V extra-high-voltage aluminum electrolytic capacitor comprises, by weight, 45-65% of primary solvents, 5-20.5% of secondary solvents, 10-20% of solutes, 8-25% of spark voltage improvers, 5-10% of stabilizers, 0.2-3% of hydrogen absorbents, and 2-5% of other additives. The invention further discloses a preparation method of the working electrolyte of the 650V-700V extra-high-voltage aluminum electrolytic capacitor and the 650V-700V extra-high-voltage aluminum electrolytic capacitor. According to the 650V-700V extra-high-voltage aluminum electrolytic capacitor, the working electrolyte and the preparation method of the working electrolyte, the spark voltage improvers and the stabilizers within the reasonable ranges are used, the high-voltage resistance and high-temperature resistance of the electrolyte are improved, and meanwhile the working electrolyte has low gas production performance. When the aluminum electrolytic capacitor with the electrolyte is subjected to a ripple current life test at 85 DEG C for 2000 hours, the aluminum electrolytic capacitor can resist the voltage of 650-700V and even higher voltage, and a breakdown phenomenon caused by unstable spark voltage of the electrolyte is avoided.
Owner:深圳市智胜新电子技术有限公司

Implantable medical device having flat electrolytic capacitor with differing sized anode and cathode layers

Flat electrolytic capacitors, particularly, for use in implantable medical devices (IMDs), and the methods of fabrication of same are disclosed. The capacitors are formed with an electrode stack assembly comprising a plurality of stacked capacitor layers each comprising an anode sub-assembly of at least one anode layer, a cathode layer and separator layers wherein the anode and cathode layers have differing dimensions that avoid electrical short circuits between peripheral edges of adjacent anode and cathode layers but maximize anode electrode surface area. The electrolytic capacitor is formed of a capacitor case defining an interior case chamber and case chamber periphery, an electrode stack assembly of a plurality of stacked capacitor layers having anode and cathode tabs disposed in the interior case chamber, an electrical connector assembly for providing electrical connection with the anode and cathode tabs through the case, a cover, and electrolyte filling the remaining space within the interior case chamber. The plurality of capacitor layers and further separator layers are stacked into the electrode stack assembly and disposed within the interior case chamber such that the adjacent anode and cathode layers are electrically isolated from one another. The anode layer peripheral edges of the anode sub-assemblies of the stacked capacitor layers extend closer to the case side wall than the cathode peripheral edges of the cathode layers of the stack of capacitor layers throughout a major portion of the case chamber periphery. The separator layer peripheral edges extend to the case periphery and space the anode layer peripheral edges therefrom. Any burrs, debris or distortions along or of any of the anode layer peripheral edges causing the anode layer edges to effectively extend in the electrode stack height direction causes the anode layer peripheral edges having such tendency to contact an adjacent anode layer. In this way, anode layer surface area is maximized, and short circuiting of the anode layers with the cathode layers is avoided. A case liner can also be disposed around the electrode stack assembly periphery.
Owner:MEDTRONIC INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products