Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

148 results about "Electron avalanche" patented technology

An electron avalanche is a process in which a number of free electrons in a transmission medium are subjected to strong acceleration by an electric field and subsequently collide with other atoms of the medium, thereby ionizing them (impact ionization). This releases additional electrons which accelerate and collide with further atoms, releasing more electrons—a chain reaction. In a gas, this causes the affected region to become an electrically conductive plasma.

Avalanche photodiode array biasing device and avalanche photodiode structure

A photodiode array includes a plurality of arrayed individual diode devices. The arrayed diode devices include at least one active photodiode and at least one reference diode. A bias control circuit for the array monitors operation of the reference diode at an applied first bias voltage and adjusts that applied first bias voltage until optimal reference diode operation is reached. A second bias voltage having predetermined relationship to the first bias voltage is applied to the active photodiode to optimally configure array operation. More specifically, an operational characteristic of the reference diode at the first bias voltage is monitored and compared to a reference value. As a result of this comparison, the circuit adjusts the applied first and second bias voltage in order to drive the reference diode measured characteristic to substantially match the reference value. The operational characteristic that is measured may comprise reference diode responsivity or reference diode output current, and may be based on either electrical or optical device operation. Each avalanche photodiode semiconductor structure may have a conventional reverse biased pn junction semiconductor structure providing a high field region as is well known in the art. An enhanced semiconductor structure may also be utilized wherein a heavily doped layer that is physically separate from the pn junction is also included to provide a source of charge carriers that are swept into the high field region.
Owner:APTINA IMAGING CORP

Radiation detector, an apparatus for use in radiography and a method for detecting ionizing radiation

A detector for detection of ionizing radiation, an apparatus for use in planar beam radiography, comprising such a detector, and a method for detecting ionizing radiation. The detector includes a chamber filled with an ionizable medium, at least one first electrode arrangement provided in said chamber where said at least one first electrode arrangement includes an electron avalanche amplification unit, said electron avalanche amplification unit including at least one avalanche cathode and at least one avalanche anode between which a voltage is to be applied for creation of an electric field for avalanche amplification, and at least one arrangement of read-out elements for detection of electron avalanches, wherein said at least one avalanche cathode has at least one hole or opening, wherein an area of said at least one hole or opening in the avalanche cathode is bigger than an area of at least one associated anode as seen from above and where said at least one anode is centered with respect to said at least one hole or opening in the avalanche cathode. A radiation entrance is provided so that radiation enters the conversion volume between the first and second electrode arrangements. In order to achieve well-defined avalanches, the electron avalanche amplification unit includes avalanche regions. The detector, apparatus and method is advantageous since it prevents the formation of harmful sparks.
Owner:XCOUNTER

Avalanche Photodiode With Edge Breakdown Suppression

The invention relates to an avalanche photodiode having enhanced gain uniformity enabled by a tailored diffused p-n junction profile. The tailoring is achieved by a two stage doping process incorporating a solid source diffusion in combination with conventional gas source diffusion. The solid source diffusion material is selected for its solubility to the dopant compared to the solubility of the multiplication layer to dopant. The solid source has a diameter between the first and second diffusion windows. Thus, there are three distinct diffusion regions during the second diffusion. The dopant in the multiplication layer at the edge region, the dopant from the solid source material with a relatively higher dopant concentration (limited by the solubility of the dopant in the solid source material) at the intermediate region, and the central region exposed to an infinite diffusion source from the solid source material as it is continually charged with new dopant from the external gas source. The result is that both the dopant concentration and the diffusion depth decrease gradually from the center to the edge of the device. This tailored diffusion profile enables control of the electric field distribution such that edge breakdown is suppressed.
Owner:LUMENTUM OPERATIONS LLC

Avalanche photodetector and method for increasing high frequency characteristics of avalanche photodetector

The invention discloses an avalanche photodetector and a method for increasing high frequency characteristics of the avalanche photodetector. The avalanche photodetector is used for detecting target detecting light and comprises an absorbing layer (8), a first charge layer (61), a multiplication layer (5), a second charge layer (62) and a transition layer which are arrayed in turn along the longitudinal direction, wherein the absorbing layer (8) is used for absorbing the target detecting light and converting photons of the target detecting light into photo-produced free carrier pairs; the first charge layer (61) is used for regulating and controlling the electric field distribution in a device; the multiplication layer (5) is used for causing the free carriers entering into the multiplication layer to trigger an avalanche effect and generate avalanche carrier pairs; and one type of carrier in the avalanche carrier pairs longitudinally drifts to one end of the avalanche photodetector through the transition layer (9). The avalanche photodetector can better regulate the capacitance of the avalanche photodetector and the transition time of the carriers and is beneficial to the increasing of the high frequency characteristics of the avalanche photodetector.
Owner:INST OF SEMICONDUCTORS - CHINESE ACAD OF SCI
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products