Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

308 results about "SCLC - Small cell lung cancer" patented technology

Tumor homing cell-penetrating peptide tLyP-1 modified apoferritin nano-cage and preparation method thereof

The invention discloses a tumor homing cell-penetrating peptide tLyP-1 modified apoferritin nano-cage and a preparation method thereof. The protein nano-cage is hollow cage-shaped protein formed by self-assembling 24 protein subunits; and one tumor homing cell-penetrating peptide tLyP-1 is modified on an N end of each protein subunit by utilizing a gene recombination technology to obtain a recombinant human body heavy-chain ferritin nano-cage with a tLyP-1 modified surface. According to the protein nano-cage provided by the invention, a medicine is loaded into the nano-cage through adjusting depolymerization and recombination of the protein subunits; the nano-cage has good water solubility and biocompatibility, has excellent stability in a human body and has a uniform size; the nano-cage can be specifically combined with a lot of neuropilin receptors 1 (NRP-1) which are expressed in tumor neovascularization and tumor cells of malignant tumors including gliomas, breast cancer, pancreatic cancer, gastric cancer, colorectal cancer, non-small cell lung cancer and the like; and types of the tumors treated by the nano-cage are greatly increased and the targeting ability of tumor treatment is improved. The protein nano-cage provided by the invention has an extremely great application prospect in the aspects of tumor diagnosis and treatment and the like.
Owner:NANJING FORESTRY UNIV

Non-small cell lung cancer pathological section identification method based on deep convolutional neural network

The invention discloses a non-small cell lung cancer pathological section identification method based on a deep convolutional neural network. The method comprises the following steps: acquiring pathological sections of non-small cell lung cancer in a public data set from TCGA; constructing a deep learning model for training; inputting the training data set into a convolutional neural network for training to obtain a learned convolutional neural network model; and inputting the training data set into a convolutional neural network for training to obtain a learned convolutional neural network model. According to the method, the Inception-v3 model and the CBAM attention mechanism are fused together, so that the classification of the non-small cell lung cancer is realized, and the network precision is improved through the attention mechanism; meanwhile, a deep convolutional neural network Inception-v3 experimental result shows that the non-small cell lung cancer pathological section identification method based on deep learning provided by the invention can effectively classify lung adenocarcinoma and lung squamous cell carcinoma, reduces the burden of doctors to a certain extent, and realizes very good performance in the field of medical image identification.
Owner:LIAONING TECHNICAL UNIVERSITY

Non-small-cell lung cancer metastasis and miRNA marker of pre-judging risk of non-small-cell lung cancer metastasis

The invention discloses application of miR-340 as a marker of detecting non-small-cell lung cancer metastasis, or as a marker of pre-judging the risk of non-small-cell lung cancer metastasis, or as a drug resistance marker for non-small-cell lung cancer. It is discovered that the miR-340 can target at downregulation of the expression level of death-associated protein kinase, the death-associated protein kinase being closely related to the metastasis and drug resistance of non-small-cell lung cancer. The increase in expression of the miR-340 indicates the increase in the chances of non-small-cell lung cancer metastasis, causing drug resistance and bad prognosis. On this basis, the moiR-340 can also serve as a target for inhibiting/preventing non-small-cell lung cancer adhesion or attack or inhibiting/preventing non-small-cell lung cancer drug resistance and can also be further popularized and applied to the prevention, treatment and prognosis of other tumor cells. The miR-340 is a new diagnostic tool provided for the clinical molecular-level diagnosis of non-small-cell lung cancer metastasis and drug resistance, and a new drug target is provided for the genetic therapy of non-small-cell lung cancer metastasis.
Owner:AFFILIATED HOSPITAL OF GUANGDONG MEDICAL UNIV

Targeted protein degradation c-Met degradation agent as well as preparation method and application thereof

The invention discloses a targeted protein degradation c-Met degradation agent as well as a preparation method and application thereof. The invention provides a c-Met degradation agent based on a targeted protein degradation PROTAC strategy, a preparation method thereof and application of the c-Met degradation agent in the treatment of non-small cell lung cancer, gastric cancer and other cancers.The compound has a remarkable c-Met degradation effect and a remarkable cell proliferation inhibition effect, has the potential of serving as an anti-tumor drug to treat tumors, shows remarkable proliferation inhibition activity in an EBC1 drug-resistant cell strain constructed by lentiviral transfection, is obviously superior to a small molecule inhibitor LXM262. and obviously improves the cell selectivity. The compound has significant advantages in overcoming tumor c-Met acquired drug resistance, especially the compound S27 only provides good activity for c-Met dependent EBC-1 lung cancer cells, it is indicated that the compound S27 has good cell selectivity while the original small molecule inhibitor is multi-target, and the compound also has an inhibition effect on a c-Met non-dependent cell line.
Owner:SUZHOU UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products