Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

146 results about "Protein subunit" patented technology

In structural biology, a protein subunit is a single protein molecule that assembles (or "coassembles") with other protein molecules to form a protein complex. Some naturally occurring proteins have a relatively small number of subunits and therefore described as oligomeric, for example hemoglobin or DNA polymerase. Others may consist of a very large number of subunits and therefore described as multimeric, for example microtubules and other cytoskeleton proteins. The subunits of a multimeric protein may be identical, homologous or totally dissimilar and dedicated to disparate tasks.

Multiple Gene Expression including sORF Constructs and Methods with Polyproteins, Pro-Proteins, and Proteolysis

Disclosed are useful constructs and methods for the expression of proteins using primary translation products that are processed within a recombinant host cell. Constructs comprising a single open reading frame (sORF) are described for protein expression including expression of multiple polypeptides. A primary translation product (a pro-protein or a polyprotein) contains polypeptides such as inteins or hedgehog family auto-processing domains, or variants thereof, inserted in frame between multiple protein subunits of interest. The primary product can also contain cleavage sequences such as other proteolytic cleavage or protease recognition sites, or signal peptides which contain recognition sequences for signal peptidases, separating at least two of the multiple protein subunits. The sequences of the inserted auto-processing polypeptides or cleavage sites can be manipulated to enhance the efficiency of expression of the separate multiple protein subunits. Also disclosed are independent aspects of conducting efficient expression, secretion, and/or multimeric assembly of proteins such as immunoglobulins. Where the polyprotein contains immunoglobulin heavy and light chain segments or fragments capable of antigen recognition, in an embodiment a selectable stoichiometric ratio is at least two copies of a light chain segment per heavy chain segment, with the result that the production of properly folded and assembled functional antibody is made. Modified signal peptides, including such from immunoglobulin light chains, are described.
Owner:ABBOTT LAB INC

Method for producing porcine circovirus type II recombinant capsid protein subunit vaccine by utilizing silkworm bioreactor and products thereof

ActiveCN101920012AGreat advantageProtein, high post-translational modification efficiencyViral antigen ingredientsVirus peptidesProtein targetTransfer vector
The invention provides a method for producing porcine circovirus type II capsid protein by utilizing a silkworm bioreactor, and belongs to the field of biotechnology. In the method, by taking a bombyx nuclear polyhedrosis virus as a vector, porcine circovirus type II capsid protein genes are integrated into a polyhedrosis promoter of the bombyx nuclear polyhedrosis virus so as to express target protein by a mode of the homologous recombination of a homologous arm of the nuclear polyhedrosis virus in a transfer vector and bombyx nuclear polyhedrosis virus (BmNPV) genes; a recombinant bombyx nuclear polyhedrosis virus containing target protein genes is obtained by a plaque sieving method, and the target protein is expressed in large scale by using a bombyx bioreactor so as to prepare a subunit vaccine containing recombinant porcine circovirus type II capsid protein; and piglet infection experiments verify that the subunit vaccine has the excellent immune protective effect. The method has the characteristics of high expression efficiency, good activity of the target protein, low production cost and the like, and is suitable for large-scale production.
Owner:PU LIKE BIO ENG +1

Tumor homing cell-penetrating peptide tLyP-1 modified apoferritin nano-cage and preparation method thereof

The invention discloses a tumor homing cell-penetrating peptide tLyP-1 modified apoferritin nano-cage and a preparation method thereof. The protein nano-cage is hollow cage-shaped protein formed by self-assembling 24 protein subunits; and one tumor homing cell-penetrating peptide tLyP-1 is modified on an N end of each protein subunit by utilizing a gene recombination technology to obtain a recombinant human body heavy-chain ferritin nano-cage with a tLyP-1 modified surface. According to the protein nano-cage provided by the invention, a medicine is loaded into the nano-cage through adjusting depolymerization and recombination of the protein subunits; the nano-cage has good water solubility and biocompatibility, has excellent stability in a human body and has a uniform size; the nano-cage can be specifically combined with a lot of neuropilin receptors 1 (NRP-1) which are expressed in tumor neovascularization and tumor cells of malignant tumors including gliomas, breast cancer, pancreatic cancer, gastric cancer, colorectal cancer, non-small cell lung cancer and the like; and types of the tumors treated by the nano-cage are greatly increased and the targeting ability of tumor treatment is improved. The protein nano-cage provided by the invention has an extremely great application prospect in the aspects of tumor diagnosis and treatment and the like.
Owner:NANJING FORESTRY UNIV

Multiple Gene Expression Including sORF Constructs and Methods with Polyproteins, Pro-Proteins and Proteolysis

Disclosed are useful constructs and methods for the expression of proteins using primary translation products that are processed within a recombinant host cell. Constructs comprising a single open reading frame (sORF) are described for protein expression including expression of multiple polypeptides. A primary translation product (a pro-protein or a polyprotein) contains polypeptides such as inteins or hedgehog family auto-processing domains, or variants thereof, inserted in frame between multiple protein subunits of interest. The primary product can also contain cleavage sequences such as other proteolytic cleavage or protease recognition sites, or signal peptides which contain recognition sequences for signal peptidases, separating at least two of the multiple protein subunits. The sequences of the inserted auto-processing polypeptides or cleavage sites can be manipulated to enhance the efficiency of expression of the separate multiple protein subunits. Also disclosed are independent aspects of conducting efficient expression, secretion, and / or multimeric assembly of proteins such as immunoglobulins. Where the polyprotein contains immunoglobulin heavy and light chain segments or fragments capable of antigen recognition, in an embodiment a selectable stoichiometric ratio is at least two copies of a light chain segment per heavy chain segment, with the result that the production of properly folded and assembled functional antibody is made. Modified signal peptides, including such from immunoglobulin light chains, are described.
Owner:ABBVIE INC

Polylysine oligomer modified recombined apoferritin nanometer cage and preparation thereof

The invention discloses a polylysine oligomer modified recombined apoferritin nanometer cage and a preparation thereof. The nanometer cage is a recombined apoferritin cage with the surface modified by polylysine oligomer that is acquired in the manner of self-assembling protein subunits into hollow spherical protein and utilizing a genetic recombination expression technique to modify different amount of lysine at the N terminal of the protein subunits. The protein nanometer cage can realize the depolymerization and recombination of the protein subunits by changing the solution pH so as to realize the drug loading; the biocompatibility and the in vivo stability are high; the nanometer cage can specifically recognize the high-expression transferrin receptor on the tumor cell surface, so as to realize the active targeting; after the recombined apoferritin nanometer cage is introduced into the cells under the endocytosis effect, the lysosome escape is realized through the proton sponge effect under the lysosome acid environment under the effect of polylysine residue, so that the drug in the protein cage can be protected from being degraded in the lysosome; the recombined apoferritin nanometer cage is expected to have an excellent application prospect at the aspects of gene drug delivery, drug organelle targeting delivery, and the like.
Owner:CHINA PHARM UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products