Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

179results about "Group 5/15 organic compounds without C-metal linkages" patented technology

Tantalum amide precursors for deposition of tantalum nitride on a substrate

Tantalum and titanium source reagents are described, including tantalum amide and tantalum silicon nitride precursors for the deposition of tantalum nitride material on a substrate by processes such as chemical vapor deposition, assisted chemical vapor deposition, ion implantation, molecular beam epitaxy and rapid thermal processing. The precursors may be employed to form diffusion barrier layers on microlectronic device structures enabling the use of copper metallization and ferroelectric thin films in device construction.
Owner:ENTEGRIS INC

Tantalum amide precursors for deposition of tantalum nitride on a substrate

Tantalum and titanium source reagents are described, including tantalum amide and tantalum silicon nitride precursors for the deposition of tantalum nitride material on a substrate by processes such as chemical vapor deposition, assisted chemical vapor deposition, ion implantation, molecular beam epitaxy and rapid thermal processing. The precursors may be employed to form diffusion barrier layers on microelectronic device structures enabling the use of copper metallization and ferroelectric thin films in device construction.
Owner:ADVANCED TECH MATERIALS INC

Systems and methods for forming tantalum oxide layers and tantalum precursor compounds

A method of forming (and apparatus for forming) a tantalum oxide layer on a substrate, particularly a semiconductor substrate or substrate assembly, using a vapor deposition process and a tantalum precursor compound that includes alkoxide ligands, for example.
Owner:MICRON TECH INC

Polyoxometalate materials, metal-containing materials, and methods of use thereof

Polyoxometalate topical compositions for removing contaminants from an environment and methods of use thereof are disclosed. An embodiment of the polyoxometalate topical composition includes a topical carrier and at least one polyoxometalate, with the proviso that the polyoxometalate is not H5PV2Mo10O40; K5Si(H2O)MnIIIW11O39; K4Si(H2O)MnIVW11O39; or K5CoIIIW12O40. Another embodiment relates to a method for removing a contaminant from an environment, including contacting the polyoxometalate topical composition with the environment containing the contaminant for a sufficient time to remove the contaminant from the environment. An additional embodiment relates to a modified material for removing a contaminant from an environment, wherein the modified material includes (1) a material comprising a topical carrier, a powder, a coating, or a fabric, and (2) a metal compound including a transition metal compound, an actinide compound, a lanthanide compound, or a combination thereof, wherein the metal compound is not a polyoxometalate.
Owner:EMORY UNIVERSITY

Precursor compositions and processes for MOCVD of barrier materials in semiconductor manufacturing

Metalorganic precursors of the formula: (R1R2N)a-bMXb wherein: M is the precursor metal center, selected from the group of Ta, Ti, W, Nb, Si, Al and B; a is a number equal to the valence of M; 1≦b≦(a-1); R1 and R2 can be the same as or different from one another, and are each independently selected from the group of H, C1-C4 alkyl, C3-C6 cycloalkyl, and RO3Si, where each R0 can be the same or different and each R0 is independently selected from H and C1-C4 alkyl; and X is selected from the group of chlorine, fluorine, bromine and iodine. Precursors of such formula are useful for chemical vapor deposition (MOCVD) of conductive barrier materials in the manufacture of microelectronic device structures, e.g., by atomic layer chemical vapor deposition on a substrate bearing nitrogen-containing surface functionality. Further described is a method of forming Si3N4 on a substrate at low temperature, e.g., using atomic layer chemical vapor deposition (ALCVD).
Owner:ENTEGRIS INC

Precursor compositions for forming tantalum-containing films, and tantalum-containing barrier films and copper-metallized semiconductor device structures

Tantalum compositions of Formulae I-V hereof are disclosed, having utility as precursors for forming tantalum-containing films. The tantalum compositions are amenable to usage involving chemical vapor deposition and atomic layer deposition processes, to form semiconductor device structures, including a dielectric layer, a barrier layer overlying the dielectric layer, and copper metallization overlying the barrier layer, wherein the barrier layer includes a Ta-containing layer including sufficient carbon so that the Ta-containing layer is amorphous. In one preferred implementation, the semiconductor device structure is fabricated by depositing the Ta-containing barrier layer, via CVD or ALD, from a precursor including a Ta alkylidene compound, at a temperature below 400° C., in a reducing or inert atmosphere.
Owner:ADVANCED TECH MATERIALS INC

Tantalum amide complexes for depositing tantalum-containing films, and method of making same

Tantalum precursors useful in depositing tantalum nitride or tantalum oxides materials on substrates, by processes such as chemical vapor deposition and atomic layer deposition. The precursors are useful in forming tantalum-based diffusion barrier layers on microelectronic device structures featuring copper metallization and / or ferroelectric thin films.
Owner:ENTEGRIS INC

Preparation of metal alkoxides

Methods of forming metal alkoxides and methods of forming precursor solutions of metal alkoxides suitable for the coating of glass in the manufacture of electrochromic devices are disclosed. The method of forming metal alkoxides involves dissolving the metal halide in an anhydrous solvent and reacting it with an alcohol and (together with the addition of the alcohol or subsequently) adding an epoxide, and then evaporating-off the volatile components of the reaction product to leave a solid metal alkoxide that is substantially free of halide. The alkoxide may then be dissolved in a solvent including an alcohol (preferably ethanol) containing a small proportion of water to produce a precursor solution suitable for coating glass, the coating then being hydrolyzed to form a sol-gel and then baked to remove volatile components and to yield a thin layer of metal oxide.
Owner:DYESOL PTY LTD

Red-shifted water dispersible napthalocyanine dyes

A naphthalocyanine dye of formula (I) is provided:whereinM is a metal group or is absent;R1 and R2 are independently selected from hydrogen or C1-12 alkoxy;X is selected from O, S or —NH—;Ar1, Ar2, Ar3, Ar4, Ar5, Ar6, Ar7 and Ar8 are selected from phenyl, naphthyl, pyridyl, furanyl, pyrollyl, thiophenyl, each of Ar1, Ar2, Ar3, Ar4, Ar5, Ar6, Ar7 and Ar8 being optionally substituted with 1, 2, 3, 4 or 5 groups, the or each group being independently selected from C1-12 alkyl, C1-12 alkoxy, C1-12 arylalkyl, C1-12 arylalkoxy, —(OCH2CH2)dORd, cyano, halogen, amino, hydroxyl, thiol, —SRv, —NRuRv, nitro, phenyl, phenoxy, —CO2Rv, —C(O)Rv, —OCORv, —SO2Rv, —OSO2Rv, —NHC(O)Rv, —CONRuRv, —CONRuRv, sulfonic acid, sulfonic acid salt and sulfonamide;d is an integer from 2 to 5000;Rd is H, C1-8 alkyl or C(O)C1-8 alkyl; andRu and Rv are independently selected from hydrogen, C1-12 alkyl, phenyl or phenyl-C1-8 alkyl.
Owner:BASF AG

Process for making metal acetylacetonates

InactiveUS7282573B2Improved and economical and environmentally benign processNo wasteGroup 8/9/10/18 element organic compoundsGroup 5/15 organic compounds without C-metal linkagesMetal acetylacetonatesCoordination complex
The present invention provides an improved, economical and environmentally benign process for metal complexes of acetylacetone having the general formula, M(acac)n wherein M is a metal cation selected from the group consisting of Fe, Co, Ni, Cu, Zn, Al, Ca, Mg, Mo, Ru, Re, U, Th, Ce, Na, K, Rb, Cs, V, Cr, and Mn etc., n is an integer which corresponds to the electrovalence of M, are obtained by reacting the corresponding metal hydroxide, metal hydrated oxide or metal oxide with a stoichiometric amount of acetylacetone and separating the product.
Owner:COUNCIL OF SCI & IND RES

Red-shifted water dispersible napthalocyanine dyes

A naphthalocyanine dye of formula (I) is provided: wherein M is a metal group or is absent; R1 and R2 are independently selected from hydrogen or C1-12 alkoxy; X is selected from O, S or —NH—; Ar1, Ar2, Ar3, Ar4, Ar5, Ar6, Ar7 and Ar8 are selected from phenyl, naphthyl, pyridyl, furanyl, pyrollyl, thiophenyl, each of Ar1, Ar2, Ar3, Ar4, Ar5, Ar6, Ar7 and Ar8 being optionally substituted with 1, 2, 3, 4 or 5 groups, the or each group being independently selected from C1-12 alkyl, C1-12 alkoxy, C1-12 arylalkyl, C1-12 arylalkoxy, —(OCH2CH2)dORd, cyano, halogen, amino, hydroxyl, thiol, —SRv, —NRuRv, nitro, phenyl, phenoxy, —CO2Rv, —C(O)Rv, —OCORv, —SO2Rv, —OSO2Rv, —NHC(O)Rv, —CONRuRv, —CONRuRv, sulfonic acid, sulfonic acid salt and sulfonamide; d is an integer from 2 to 5000; Rd is H, C1-8 alkyl or C(O)C1-8 alkyl; and Ru and Rv are independently selected from hydrogen, C1-12 alkyl, phenyl or phenyl-C1-8 alkyl. Dyes of this type are especially suitable for use in netpage and Hyperlabel™ systems.
Owner:BASF AG

Chiral ligands, transition-metal complexes thereof and uses thereof in asymmetric reactions

Chiral ligands and transition metal complexes based on such chiral ligands useful in asymmetric catalysis are disclosed. The chiral ligands include phospholanes, P,N ligands, N,N ligands, biphenols, and chelating phosphines. The ferrocene-based irridium (R,R)-f-binaphane complex reduces imines to the corresponding amines with 95-99.6% enantioselectivity and reduces beta-substituted-alpha-arylenamides with 95% enantioselectivity. The transition metal complexes of the chiral ligands are useful in asymmetric reactions such as asymmetric hydrogenation of imines, asymmetric hydride transfer reactions, hydrosilylation, hydroboration, hydrovinylation, hydroformylation, allylic alkylation, cyclopropanation, Diels-Alder reaction, Heck reaction, isomerization, Aldol reaction, Michael addition and epoxidation reactions.
Owner:PENN STATE RES FOUND

Peroxynitrite decomposition catalysts and methods of use thereof

This invention provides a novel class of substituted macrocyclic metallic complexes. The complexes are useful as peroxynitrite decomposition catalysts. Pharmaceutical compositions, and methods of making and using the compounds, or a pharmaceutically acceptable salt, hydrate, prodrug, or mixture thereof are also described.
Owner:THE TRUSTEES FOR PRINCETON UNIV

Precursor compositions and processes for MOCVD of barrier materials in semiconductor manufacturing

Metalorganic precursors of the formula:(R1R2N)a−bMXbwherein: M is the precursor metal center, selected from the group of Ta, Ti, W, Nb, Si, Al and B; a is a number equal to the valence of M; 1≦b≦(a−1); R1 and R2 can be the same as or different from one another, and are each independently selected from the group of H, C1–C4 alkyl, C3–C6 cycloalkyl, and R03Si, where each R0 can be the same or different and each R0 is independently selected from H and C1–C4 alkyl; and X is selected from the group of chlorine, fluorine, bromine and iodine. Precursors of such formula are useful for chemical vapor deposition (MOCVD) of conductive barrier materials in the manufacture of microelectronic device structures, e.g., by atomic layer chemical vapor deposition on a substrate bearing nitrogen-containing surface functionality. Further described is a method of forming Si3N4 on a substrate at low temperature, e.g., using atomic layer chemical vapor deposition (ALCVD).
Owner:ENTEGRIS INC

Polymerization of olefins

Olefins, such as ethylene, are polymerized using as a polymerization catalyst a complex of a selected transition metal with a monoanionic ligand that has at least three atoms that may coordinate to the transition metal. Also disclosed are the above selected transition metal complexes, and intermediates thereto.
Owner:EI DU PONT DE NEMOURS & CO

Method for large scale production of organometallic compounds

This invention relates to a one pot method for large scale production of an organometallic compound comprising (i) reacting a hydrocarbon or heteroatom-containing material with a base material in the presence of a solvent and under reaction conditions sufficient to produce a first reaction mixture comprising a hydrocarbon or heteroatom-containing compound, (ii) adding a metal source compound to said first reaction mixture, (iii) reacting said hydrocarbon or heteroatom-containing compound with said metal source compound under reaction conditions sufficient to produce a second reaction mixture comprising said organometallic compound, and (iv) separating said organometallic compound from said second reaction mixture.
Owner:PRAXAIR TECH INC

Mixed metal alkoxide complexes and polymerization catalysts made therefrom

A mixed metal-containing precursor is disclosed whereby the precursor includes: a) a mixed metal component represented by the following formula: (M1M2)x(T1T2)y where M1 and M2 may be the same or different and are selected from one or more metals having a +2 oxidation state, T1 and T2 may be the same or different and are selected from one or more metals having oxidation states selected from the groups consisting of +3, +4, and +5, the molar ratio of x / y is from about 2.5 to about 3.75, with the proviso that if M1 and M2 are both Mg then T1 and T2 cannot both be chosen from Zr and Ti+4; and b) at least one moiety complexed with component a) selected from alkoxide groups, phenoxide groups, halides, hydroxy groups, carboxyl groups, amide groups, and mixtures thereof. A polymerization procatalyst prepared from the mixed metal containing precursor, methods of making the precursor and procatalyst, as well as polymerization methods using the procatalyst also are disclosed.
Owner:UNION CARBIDE CHEM & PLASTICS TECH CORP

Process for the preparation of high-purity zirconium, hafnium, tantalum and niobium alkoxides

A novel process for the preparation of high-purity zirconium, hafnium, tantalum and niobium alkoxides (alcoholates), novel tantalum and niobium compounds and a process for their preparation are provided. The process comprises the steps of mixing crude metal alkoxides M(OR)x having a halogen impurity of at least 0.05 wt. %, with an alcohol ROH, in which R is a C1-C12-alkyl radical, and subsequently or simultaneously metering in an excess of ammonia, based on the amount of mononuclear or polynuclear halogen-containing metal alkoxides.
Owner:HERAEUS PRECIOUS METALS GMBH & CO KG

Tantalum amide complexes for depositing tantalum-containing films, and method of making same

Tantalum precursors useful in depositing tantalum nitride or tantalum oxides materials on substrates, by processes such as chemical vapor deposition and atomic layer deposition. The precursors are useful in forming tantalum-based diffusion barrier layers on microelectronic device structures featuring copper metallization and / or ferroelectric thin films.
Owner:ENTEGRIS INC

Tantalum and niobium compounds and their use for chemical vapour deposition (CVD)

Tantalum and niobium compounds having the general formula (I) and their use for the chemical vapour deposition process are described: wherein M stands for Nb or Ta, R1 and R2 mutually independently denote optionally substituted C1 to C12 alkyl, C5 to C12 cycloalkyl, C6 to C10 aryl radicals, 1-alkenyl, 2-alkenyl, 3-alkenyl, triorganosilyl radicals —SiR3, or amino radicals NR2 where R═C1 to C4 alkyl, R3 denotes an optionally substituted C1 to C8 alkyl, C5 to C10 cycloalkyl, C6 to C14 aryl radical, or SiR3 or NR2, R4 denotes halogen from the group comprising Cl, Br, I, or NH—R5 where R5═optionally substituted C1 to C8 alkyl, C5 to C10 cycloalkyl or C6 to C10 aryl radical, or O—R6 where R6=optionally substituted C1 to C11 alkyl, C5 to C10 cycloalkyl, C6 to C10 aryl radical, or —SiR3, or BH4, or an optionally substituted allyl radical, or an indenyl radical, or an optionally substituted benzyl radical, or an optionally substituted cyclopentadienyl radical, or —NR—NR′R″ (hydrazido(−1), wherein R, R′ and R″ have the aforementioned meaning of R, or CH2SiMe3, pseudohalide (e.g. —N3), or silylamide —N(SiMe3)2, R7 and R8 mutually independently denote H, optionally substituted C1 to C12 alkyl, C5 to C12 cycloalkyl or C6 to C10 aryl radicals.
Owner:H C STARCK GMBH

Hydrothermally stable anionic pillared porous material and preparation method and applications thereof

The invention discloses a hydrothermally stable anionic pillared porous material and a preparation method and applications thereof. The hydrothermally stable anionic pillared porous material is prepared from metal ions, an inorganic anion NbOF5<2-> and an organic ligand through self-assembly and the components are connected by coordination bonds. The formula of the porous material is ZU-NbOF5-L-M.The preparation method comprises following steps: mixing a metal oxide (MO), Nb2O5 and hydrofluoric acid according to a certain ratio in a hydrothermal reactor to carry out hydrothermal reactions, and then cooling the hydrothermal reactor in a still state to obtain an inorganic metal ligand MNbOF5; and (2) dissolving M-NbOF5 into a solvent (A) to obtain a solution (A), dissolving an organic ligand (L) into a solvent (B) to obtain a solution (B), adding the solution (A) into the solution (B), stirring, carrying out reactions, after reactions, washing the reaction production by a solvent (C), soaking the reaction product in the solvent (C), and drying to obtain ZU-NbOF5-L-M. The provided hydrothermally stable anionic pillared porous material is used to separate C2-C3 hydrocarbon compounds.
Owner:ZHEJIANG UNIV

Peroxynitrite decomposition catalysts and methods of use thereof

This invention provides a novel class of substituted macrocyclic metallic complexes. The complexes are useful as peroxynitrite decomposition catalysts. Pharmaceutical compositions, and methods of making and using the compounds, or a pharmaceutically acceptable salt, hydrate, prodrug, or mixture thereof are also described.
Owner:THE TRUSTEES FOR PRINCETON UNIV

Olefin polymerization catalysts, transition metal compounds, processes for olefin polymerization, and alpha-olefin/conjugated diene copolymers

The invention provides olefin polymerization catalyst exhibiting excellent polymerization activities, a process for olefin polymerization using the catalyst, a novel transition metal compound useful for the catalyst, and an alpha-olefin / conjugated diene copolymer having specific properties. The olefin polymerization catalyst of the invention comprises (A) a transition metal compound of formula (I) or (II), and (B) an organometallic compound, an oranoaluminum oxy-compound or an ionizing ionic compound. The novel transition metal compound of the invention is a compound of formula (I) wherein M is a transition meal atom of Group 3 or 4 of the periodic table; m is an integer of 1 to 3; R1 is a hydrocarbon group, etc.; R2 to R5 are each H, a halogen, a hydrocarbon group, etc.; R6 is a halogen, a hydrocarbon group, etc.; n is a number satisfying a valence of M; and X is a halogen, a hydrocarbon group, etc.
Owner:MITSUI CHEM INC

Mixed-valence hexavanadate alkoxyl derivative and preparation method thereof

The invention relates to a mixed-valence hexavanadate alkoxyl derivative and a preparation method thereof and belongs to the technical field of organic-inorganic hybrid materials. According to the structure of the alkoxyl derivative, three bridging oxygen atoms arranged to form a planar triangle on a Linqivist hexavanadate framework are substituted by three hydroxyl oxygens of a tri-hydroxymethyl compound molecule, three tri-hydroxymethyl compounds are adjacently distributed on the hexavanadate framework, and all vanadium is tetravalent vanadium or tetravalent and pentavalent vanadium distributed in a mixed mode. The tri-hydroxymethyl compounds are tri-hydroxymethyl aminomethane, pentaerythritol, trimethylolethane or trimethylolpropane. The tri-substituted hexavanadate alkoxyl derivative and a post-modification product thereof possibly have unique magnetism, catalytic activity and other properties. The properties make them have unique advantages on the aspect of the organic-inorganic hybrid materials rich in construction structure and property.
Owner:HUBEI UNIV OF TECH

Radiation absorbing compositions, methods and articles incorporating such compositions

Infrared (IR) radiation absorbing compounds of metal or metalloids with ligands are beneficial for many applications. Schiff base biquinone (SBB) ligands surrounding a metal or metalloid center may be used for laser welding applications, as one example, wherein effective infared radiation absorption and heat resistance are required. These compounds may be known as Schiff base biquinone metal complexes (SBBC's). The compositions and methods of this invention provide examples of many different NIR absorbing compounds that exhibit high NIR absorbing strength, good thermal stability, and relatively low visible color. The IR absorbing compounds may employ one or more of the following elements: Si, Zr, Bi, Sb, Ce, Cs, K, Mo.
Owner:MILLIKEN & CO
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products