Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

42results about How to "Stripping is easy" patented technology

Technique for extraction separation of quadravalence cerium, thorium and cerium less tervalence rare earth from sulphuric acid rare earth solution

The invention relates to a technological method for extracting and separating quadrivalent cerium, thorium, and less-cerium trivalent rare-earth from rare earth sulfate solution. The rare earth sulfate solution, which is obtained through processing the rare-earth ores and contains the thorium and high-valence cerium, is used as raw material; synergistic extraction agent basing on P507 and P204 is adopted for extracting and separating; the cerium (4) and the thorium are extracted into an organic phase, then selective washing and back extraction are performed step by step to obtain the products including pure cerium and pure thorium, the trivalent rare-earth is left in a water phase, and then unsaponifiable P507 or the synergistic extraction agent basing on P507 is adopted to perform multistage fractional extraction to separate single rare earth elements after impurity removal. The technological methodn has the characteristics that the synergistic extraction agent basing on P507 and P204 is adopted, the thorium is easy to perform the back extraction, and extraction capacity is large, and the emulsification is not generated during the extraction process; the cerium (4), the thorium and trivalent rare-earth are extracted and separated in the same extraction system; both extraction and the separation adopt unsaponifiable extraction agent, and ammonia-nitrogen wastewater is not generated; in addition, the thorium is recovered as products, and the pollutions caused by thorium-containing waste residue and the ammonia-nitrogen containing wastewater are eliminated from headstream. Therefore, the technological method has the advantages of simple procedures, green environmental protection, and low manufacturing cost.
Owner:GRIREM ADVANCED MATERIALS CO LTD

Method for preparing sodium nitrate through solvent extraction

The invention provides a method for preparing sodium nitrate through solvent extraction. The method includes the following steps that step1, a potassium chloride saturated solution with the temperature of 50 DEG C-70 DEG C is prepared, nitric acid is added to react with the potassium chloride saturated solution at the temperature of 50 DEG C-70 DEG C, cooling crystallization and solid-liquid separation are performed, and an obtained solid phase is washed with water and dried to obtain a potassium nitrate product; step2, an extraction agent is added into a liquid phase obtained in solid-liquid separation in the step1, and a raffinate water phase is returned into a reaction vessel in the step1; 3, an organic phase obtained in extraction in the step2 is mixed with water or a second mother solution, ammonia gas is led into the mixture for reverse extraction, and a reverse extraction organic phase is returned to the step2; 4, condensation crystallization and solid-liquid separation are performed on a reverse extraction water phase in the step3 to obtain ammonium chloride and a first mother solution, potassium chloride is added into the first mother solution and reacts with the first mother solution at the temperature of 60 DEG C-80 DEG C, cooling crystallization and solid-liquid separation are performed to obtain a solid phase and the second mother solution, the obtained solid phase is washed and dried to obtain a potassium nitrate product, and the second mother solution is returned to the step3.
Owner:SICHUAN UNIV

Technique for extraction separation of quadravalence cerium, thorium, fluorine and cerium less tervalence rare earth from sulphuric acid rare earth solution

The invention relates to a technological method for extracting and separating quadrivalent cerium, thorium, fluorine and less-cerium trivalent rare-earth from rare earth sulfate solution. The rare earth sulfate solution, which is obtained through processing the rare-earth ores and contains high-valence cerium, the fluorine, the thorium and ferrum, is used as raw material; synergistic extraction agent basing on P507 and P204 is adopted for extracting and separating; the cerium (1V), the thorium, the fluorine, and the ferrum are extracted into an organic phase, then selective washing and back extraction are performed step by step to obtain three products that are the cerium, the fluorine, and the thorium, the trivalent rare-earth is left in a water phase, and then unsaponifiable P507 or thesynergistic extraction agent basing on P507 is adopted to perform multistage fractional extraction to separate single rare earth elements. The technological method has the characteristics that the synergistic extraction agent basing on P507 and P204 is adopted, the thorium is easy to perform the back extraction, and extraction capacity is large, and the emulsification is not generated during the extraction process; the cerium (1V), the thorium, the fluorine, the ferrum and the trivalent rare-earth are extracted and separated in the same extraction system; both extraction and the separation adopt unsaponifiable extraction agent, and ammonia-nitrogen wastewater is not generated; in addition, the thorium and the fluorine are recovered as products, and the pollutions caused by thorium-containing waste residue, fluoride-containing wastewater and the ammonia-nitrogen wastewater are eliminated from headstream. Therefore, the technological method has the advantages of simple procedures, greenenvironmental protection, and low manufacturing cost.
Owner:GRIREM ADVANCED MATERIALS CO LTD

Technique for extraction separation of quadravalence cerium, thorium and cerium less tervalence rare earth from sulphuric acid rare earth solution

The invention relates to a technological method for extracting and separating quadrivalent cerium, thorium, and less-cerium trivalent rare-earth from rare earth sulfate solution. The rare earth sulfate solution, which is obtained through processing the rare-earth ores and contains the thorium and high-valence cerium, is used as raw material; synergistic extraction agent basing on P507 and P204 is adopted for extracting and separating; the cerium (4) and the thorium are extracted into an organic phase, then selective washing and back extraction are performed step by step to obtain the products including pure cerium and pure thorium, the trivalent rare-earth is left in a water phase, and then unsaponifiable P507 or the synergistic extraction agent basing on P507 is adopted to perform multistage fractional extraction to separate single rare earth elements after impurity removal. The technological methodn has the characteristics that the synergistic extraction agent basing on P507 and P204 is adopted, the thorium is easy to perform the back extraction, and extraction capacity is large, and the emulsification is not generated during the extraction process; the cerium (4), the thorium and trivalent rare-earth are extracted and separated in the same extraction system; both extraction and the separation adopt unsaponifiable extraction agent, and ammonia-nitrogen wastewater is not generated; in addition, the thorium is recovered as products, and the pollutions caused by thorium-containing waste residue and the ammonia-nitrogen containing wastewater are eliminated from headstream. Therefore, the technological method has the advantages of simple procedures, green environmental protection, and low manufacturing cost.
Owner:GRIREM ADVANCED MATERIALS CO LTD

Preparation method of lutetium nitrate feed liquid

The invention discloses a preparation method of lutetium nitrate feed liquid. The preparation method comprises the following steps: mixing naphthenic acid, octanol and kerosene to obtain an organic extraction agent; then adding a sodium hydroxide solution into the organic extraction agent, and carrying out saponification reaction to obtain a saponified organic extraction agent; then carrying out rare earth saponification in a cascade reaction mode, and mixing and reacting the obtained saponification organic extraction agent and lutetium chloride feed liquid and then standing for phase splitting; then adopting a multi-stage washing mode, taking an organic phase obtained in the last-stage extraction section to be mixed with a water phase or nitric acid in a next-stage washing section for reaction, and then standing for phase splitting; and mixing the organic phase obtained in the last-stage washing section with the water phase or nitric acid in the next-stage back extraction section in amulti-stage back extraction mode, reacting, standing, and carrying out phase splitting to obtain a water phase, namely lutetium nitrate feed liquid, in the last-stage back extraction section. The method effectively solves the problems that the existing lutetium nitrate feed liquid production process is complicated, and the content of chloride ions and sodium ions in the obtained lutetium nitratefeed liquid is high.
Owner:CHALCO GUANGXI RARE EARTH DEV CO LTD

Heavy rare earth and light rare earth separation method and extraction agent

InactiveCN103451427BAvoid the limitations of low solubilityLess quantityProcess efficiency improvementRare-earth elementNitrate
The invention discloses a heavy rare earth and light rare earth separation method and a heavy rare earth and light rare earth separation extraction agent. The method includes the step of conducting extraction on a rare earth element and nitrate mixed aqueous solution through imidazolyl ionic liquid where the extraction agent is dissolved or chloroform where the extraction agent is dissolved or a 1-pentanol diluent where the extraction agent is dissolved so that heavy rare earth elements can be extracted and yttrium and light rare earth elements can be kept in the aqueous phase, wherein the extraction agent which is used is 1-methylimidazole shown in the chemical formula 1 or 2-methylimidazole shown in the chemical formula 2 when the diluent is the imidazolyl ionic liquid or the chloroform, and the extraction agent which is used is 2-methylimidazole shown in the chemical formula 2 when the diluent is the 1-pentanol diluent. The heavy rare earth and light rare earth separation method and the heavy rare earth and light rare earth separation extraction agent have the advantages that the extraction agent is low in price and can be easily obtained, the extraction system is simple, the extraction efficiency is high, the amount of the extraction agent which is used is small, and the specificity is strong.
Owner:LANZHOU UNIVERSITY
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products