Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

682 results about "Fiber coupling" patented technology

Fiber optic shape sensor

A shape sensing system to determine the position and orientation of one link with respect to another link in a kinematic chain. An optical fiber is coupled to two or more links in a kinematic chain. A shape sensing segment is defined to start at a proximal link and to end at a distal link, crossing one or more joints. A reference frame is defined at the start of the shape sensing segment. As the joints move, an interrogator senses strain in the shape sensing segment. The sensed strain is used to output a Cartesian position and orientation of the end of the shape sensing segment with respect to the reference frame defined at the start of the shape sensing segment. The pose of the kinematic chain is determined from the Cartesian positions and orientations of one or more shape sensing segments defined for the kinematic chain and from an a priori model and constraints of the kinematic chain.
Owner:INTUITIVE SURGICAL OPERATIONS INC

Fiber to the home (FTTH) multimedia access system with reflection PON

A Fiber-to-the-Home (FTTH) multi-media access system and method are provided in which voice, video and data signals are transported over a passive optical network (PON) between a central office location and a plurality of subscriber home network units (HNUs). Optical video distribution circuitry and telephony / data distribution circuitry at the central office location are included in the system and operate to send and receive CATV video, PBS video television, telephony and Packet data signals to and from the HNUs via the PON. Optical multiplexing / demultiplexing circuitry operating at the central office combines the video signals, which are operating at one optical wavelength, with the telephony / data signals, which are operating at a second, distinct optical wavelength. These combined optical signals are then transported over the PON to the HNUs. The PON includes a plurality of distribution fibers coupled to a plurality of passive optical splitters, which are each coupled to a plurality of drop fibers that connect to the HNUs. The HNUs receive the combined optical signals, demultiplex and convert the optical signals into corresponding electrical signals, which are in turn coupled through the HNU to the video, data and telephony networks within the home. The HNUs also receive upstream electrical signals from devices within the home, multiplex and convert these electrical signals into upstream optical signals, and transmit these upstream optical signals to the central office.
Owner:ADVANCED FIBER ACCESS CORP

Portable coordinate measurement machine with integrated line laser scanner

A portable coordinate measurement machine for measuring the position of an object in a selected volume comprises includes an a positionable articulated arm having a plurality of jointed arm segments. The arm includes a measurement probe having an integrated line laser scanner mounted thereon. The laser may be a fiber coupled laser. Wireless data transfer and communication capability for the CMM is also possible.
Owner:FARO TECH INC

Identifying optical fiber segments and determining characteristics of an optical device under test based on fiber segment scatter pattern data

Complex data is obtained from OFDR backscatter measurements for an optical device under test (DUT). That complex scatter pattern data may be used along with a previously-determined fiber segment pattern to identify the fiber segment within the DUT, even when the DUT is an optical network DUT that includes multiple fibers coupled to perform one or more functions. In other non-limiting example applications, the OFDR scatter pattern data can be used to identify where in the DUT a loss occurred and where in the DUT a temperature change occurred.
Owner:INTUITIVE SURGICAL OPERATIONS INC

Wireless fiber-coupled telecommunication systems based on atmospheric transmission of laser signals

A wireless optical transceiver system which includes a passive optical antenna coupled by optical fiber to an active electronics module. The transceiver system receives and transmits light beams from / to the atmosphere,.and thereby communicates optically with a second optical transceiver. Receivers, transmitters, repeaters, switches, routers, etc., may be similarly organized, i.e. by coupling one or more passive optical antennas and an active electronics module with fiber-optic cable. Furthermore, various network toplogies and organizations may be arranged using one or more of the fiber-coupled transceivers, receivers, transmitters, repeaters, switches, routers, etc. Such components are admirably suited for use in various network configurations such as broadcast networks, point-to-multipoint networks, etc due to their low cost, ease of installation and antenna sighting, modularity, and upgradability. An optical router for establishing wireless channels to a number of subscribers may be configured based on demodulation and remodulation of light beams, or alternatively by redirecting light beams by adjustable deflections mirrors. A communications network infrastructure based on atmospheric light beam propagation is contemplated.
Owner:SEAFORT INT TRADING SRL +1

Optical module for high-speed bidirectional transceiver

InactiveUS6939058B2Simplified adjustment procedureEasy constructionCoupling light guidesTransceiverOptical Module
The optical module of the invention for high-speed bidirectional transceiver consists of a signal receiving unit, a signal transmitting unit, a common receiving-transmitting optical fiber, and a fiber coupling unit. The laser diode and the photodiode are arranged parallel to each other in closely located recesses of the module housing. Such an arrangement makes it possible to shorten distances for guiding lead wires from the terminals of the PC board to the respective terminals of the transmitting and receiving diodes. The laser diode emits a first transmitting laser beam that passes through a microobjective that collimates the beam and directs into onto a full-reflection mirror located inside the module housing. The full-reflection mirror reflects the first transmitting beam at an angle of 90° and transmits it to the end face of an optical fiber through an optical fiber collimator that centers the beam with the fiber core. The module is provided with a second mirror, which is fully transparent to the aforementioned first transmitting beam, but is fully reflective to a second transmitting beam that may propagate in a direction opposite to the first transmitting beam on a different wavelength. Alignment of the optical components is facilitated due to the fact that it is carried out with diffractionally limited and collimated beams.
Owner:MICROALIGN TECH +1

Apparatus and methods for the treatment of presbyopia using fiber-coupled-lasers

Systems and surgical techniques for presbyopia correction by laser removal of the sclera tissue are disclosed. The disclosed preferred embodiments of the system consists of a beam spot controller, a fiber delivery unit and a fiber tip. The basic laser including UV lasers and infrared lasers having wavelength ranges of (0.15-0.36) microns and (1.9-3.2) microns and diode lasers of about 0.98, 1.5 and 1.9 microns. Presbyopia is treated by a system which uses an ablative laser to ablate the sclera tissue outside the limbus to increase the accommodation of the ciliary body of the eye. The sclera tissue may be ablated by the laser with or without the conjunctiva layer open.
Owner:NEOS OCULAR

Individually electrically addressable carbon nanofibers on insulating substrates

Systems and methods are described for individually electrically addressable carbon nanofibers on insulating substrates. A method includes forming an electrically conductive interconnect on at least a part of an insulating surface on a substrate; and growing at least one fiber that is coupled to the electrically conductive interconnect. An apparatus includes an electrically conductive interconnect formed on at least a part of an insulating surface on a substrate; and at least one fiber coupled to the electrically conductive interconnect. A kit includes a substrate having an insulating surface; an electrically conductive interconnect formed on at least a part of the insulating surface; and at least one fiber coupled to the electrically conductive
Owner:THE UNITED STATES AS REPRESENTED BY THE DEPARTMENT OF ENERGY

Wide field-of-view amplified fiber-retro for secure high data rate communications and remote data transfer

An optical system for remotely optical communications at a high data rate between a base station and a remote station under atmospheric turbulence conditions is disclosed. The remote station includes an entirely different type of retroreflector that does not use the conventional type of retroreflection, but instead consists of two sets of lenslets coupled with single-mode fiber array, called fiber “retro”. Amplified retromodulation is achieved requiring only one single optical amplifier and one single modulator. A transmitter located at the base station sends an interrogating optical beam to the fiber “retro” which modulates the optical beam according to the input signal / data, and redirects the modulated optical beam to the base station for detection by a receiver. The present invention includes the capabilities of providing Identification of Friend-or-Foe (IFF), secure communication, and a means of achieving a wide field-of-view (FOV) with a fiber-coupled lenselet array.
Owner:MAJUMDAR ARUN KUMAR +1

Frequency division and/or wavelength division multiplexed recursive fiber optic telemetry scheme for an optical sensor array

An optical fiber sensor array is disclosed which includes a first sensor fiber and a first reference fiber coupled at one end thereof to one side of a first optical coupling. A first wavelength selective reflector is coupled to the other end of each of the first sensor fiber and the first reference fiber. A second sensor fiber is coupled at one end to one side of a second optical coupling. The other side of the second optical coupling is coupled to an opposite side of one of the first wavelength selective reflectors coupled on one side to the first sensor fiber and the first reference fiber. The array also includes a second wavelength selective reflector coupled to the other end of each of the second sensor fiber and the second reference fiber. The second wavelength selective reflectors are operative at a wavelength different from an operative wavelength of the first wavelength selective reflectors.
Owner:GEOSPACE TECH

System and apparatus for radial optical distribution

ActiveUS20060165365A1Improving fiber organizationImproving routing managementRing-type electromagnetic networksOptical fibre/cable installationDistribution systemEngineering
Embodiments of the invention include an apparatus and system for managing and radially distributing optical fibers from a first location, such as a central office, to a plurality of destination locations, such as homes within a neighborhood. The apparatus includes a distribution panel having a central hub or ring, and both a plurality of optical input elements and a plurality of optical output elements disposed radially around the central hub. The optical input elements split the fibers coupled from the first location into a plurality of individual fibers that are routed to the central hub. The central hub radially distributes the plurality of fibers to appropriate optical output elements, which are coupled to destination fibers routed to the plurality of destination locations. The radial configuration of the apparatus provides a central breakout point for fiber distribution, thus improving fiber organization and routing management compared to conventional routing and distribution systems.
Owner:FURAKAWA ELECTRIC NORTH AMERICA INC

Hybrid fiber coupled artificial compound eye

A hybrid, wide angle imaging system combines high sensitivity superposition arrays with a high resolution apposition array to generate distortion free images with an infinite depth of field. A conformal, superposition array of Keplerian telescope objectives focuses multiple apertures of light through the tubes of a louver baffle. The baffle tubes are terminated by field stops that separate the focused light into inverted, intermediate sub-images. A superposition array of field lenses, positioned immediately after the field stops, reverses the angles of the light beams. An apposition array of erector lenses, linked optically to the superposition arrays and field stops, refocuses and adjoins the beams into a single, upright image. The upright image is formed on the convex surface of a fiber optic imaging taper, which transfers the image to the flat bottom of the taper where it can be viewed through an eyepiece or digitized by a detector array.
Owner:SPECTRAL IMAGING LAB

High-speed, ultra precision manufacturing station that combines direct metal deposition and edm

A direct-metal deposition (DMD) processing stage and a 5DOF (degree of freedom) dry micro-EDM (mEDM) stage are integrated to provide the submicron scale resolution necessary for the ultra-precision processing of work pieces. The DMD processing stage includes optical feedback for dimensional control utilizing a high-power, fiber-coupled diode laser with fast response time and small beam parameter product. The electrical discharge machining (EDM) stage is a dry EDM stage using an inert gas with appropriate dielectric properties to perform the surface finishing operations. The system further includes one or more surface treatment operations to obtain a desired level of surface hardness or wear resistance and / or to minimize the distortion induced in treating the surface.
Owner:DM3D TECH

Beam Homogenizer

A system for homogenizing the intensity profile of light includes a plurality of fiber coupled light sources for emitting fiber output beams from fiber output ends, and a light pipe optically coupled to the fiber output beams for producing a uniform light pipe output beam, an interleaver that transmits a first set of fiber output beams and reflects a second set of fiber output beams so that the principal rays of the fiber output beams propagate in a common plane, a first optical element for converging the principal rays, and a second optical element for telecentrically imaging the beams into the light pipe such that the principal rays of the beams propagate parallel to each other and the beams are focused in the light pipe in a focal plane transverse to the direction of propagation.
Owner:NLIGHT INC

Fiber optic transceiver module with rigid and flexible circuit boards

An optical transceiver for converting and coupling an information-containing electrical signal with an optical fiber includes a housing and coupled rigid and flex printed circuit boards. The housing includes a fiber optic connector adapted for coupling with an external optical fiber for transmitting and / or receiving an optical communications signal. The rigid printed circuit board is within the housing and includes an electrical connector for coupling with an external electrical cable or information system device, and for transmitting and / or receiving an information-containing electrical communications signal. A first interface connector is for receiving or transferring the electrical signal. A flexible printed circuit board is also within the housing and coupled to the rigid printed circuit board, including a second interface connector for mating with the first interface connector, and transmitting or receiving the electrical signal to or from the rigid printed circuit board. An electro-optical subassembly on the flex board is for converting between an electrical signal and a modulated optical signal. The flex board is adapted for coupling to the fiber optic connector.
Owner:SUMITOMO ELECTRIC DEVICE INNOVATIONS U S A

Fiber Coupling Technique on a Waveguide

ActiveUS20130022316A1Easy to manufactureReduce the difficulty of polishingCoupling light guidesTip positionOptical coupling
An optical coupling assembly for coupling light from an optical fiber including an angled tip into a planar waveguide via a waveguide coupling element is provided. In one embodiment, the optical fiber extends along the planar waveguide with the angled tip positioned such that light propagating in the optical fiber is coupled by the waveguide coupling element to propagate in the planar waveguide in counter propagation with respect to a fiber propagation direction. In another embodiment, the optical fiber includes a tapered peripheral portion tapering toward the angled tip and is disposed over the planar waveguide with the tapered peripheral portion extending therealong such that light propagating in the optical fiber is coupled to propagate in the planar waveguide with either forward or counter propagation. Embodiments of the present invention may be part of various photonic integrated circuits and may be manufactured more easily than known optical coupling assemblies.
Owner:CIENA

Highly compact laser scanning microscope with integrated short-pulse laser

The invention describes a highly compact laser scanning microscope with integrated short-pulse laser. Direct coupling or a fiber coupling of the short-pulse laser with the laser scanning microscope is advantageously circumvented with this arrangement. This compact arrangement of the laser in the scan module of the laser scanning microscope can be used in a particularly advantageous manner, for example, in multiphoton microscopy for three-dimensionally resolved microscopic analysis, e.g., of biological specimens. Because of the inherent depth discrimination of the multiphoton technique, confocal pinholes can be entirely omitted in the detection beam path. Accordingly, the microscope system can be realized in a very simple manner with respect to engineering and is particularly simple to handle with respect to application. Through the use of a short-pulse laser system in which a plurality of wavelengths are available simultaneously, diverse applications can be realized in one and the same compact microscope system.
Owner:CARL ZEISS MICROSCOPY GMBH

Multi-channel, self-calibrating fiber-coupled raman spectrometers including diagnostic and safety features

ActiveUS20050162646A1Facilitates quasi-simultaneousFacilitates sequential calibration/data acquisitionRadiation pyrometrySpectrum investigationCircular discData acquisition
A multi-channel, reconfigurable fiber-coupled Raman instrument uses fiber optic switches for laser and calibration light routing to facilitate automated calibration, diagnosis and operational safety. The system allows wavelength axis calibration on all channels; laser wavelength calibration (including multiple and / or backup laser options); fiber coupling optimization; fault detection / diagnosis; and CCD camera binning setup. In the preferred embodiment, dedicated calibration channels surround data channels on a 2-dimensional CCD dispersed slit image implemented using a unique cabling architecture. This “over / under” calibration interpolation approach facilitates quasi-simultaneous or sequential calibration / data acquisitions. CCD binning between sequential calibration and data acquisitions enables higher density multi-channel operation with tilted images based upon a multiplexed grating configuration. A diamond sample is used as a Raman shift reference for laser calibration, preferably in the form of a small disc sampled with an edge-illuminating probe using two unfiltered fibers. Detection of beam transmitted through the diamond reference is also used to optimize laser coupling efficiency with motion servos. An “intrinsically safe” laser interlock circuit also serves as current source for probe head “laser on” diode indicator. The integrity of key components is monitored through strategically placed photodiodes positioned, for example, at fiber bends to detect light leakage from bent fiber as verification of commanded laser path through fiber switches and at neon and halogen lamp locations to verify lamp operation. The optical switches used for calibration may also be configured for use as a laser shutter.
Owner:ENDRESS + HAUSER OPTICAL ANALYSIS INC

Method, Apparatus and System for Rapid and Sensitive Standoff Detection of Surface Contaminants

Systems and methods for fast and sensitive standoff surface-hazard detection with high data throughput, high spatial resolution and high degree of pointing flexibility. The system comprises a first hand-held unit that directs an excitation beam onto a surface that is located a distance away from the first unit and an optical subsystem that captures scattered radiation from the surface as a result of the beam of light. The first unit is connected via a link that includes a bundle of optical fibers, to a second unit, called the processing unit. The processing unit comprises a fiber-coupled spectrograph to convert scattered radiation to spectral data, and a processor that analyzes the collected spectral data to detect and / or identify a hazardous substance. The second unit may be contained within a body-wearable housing or apparatus so that the first unit and second unit together form a man-portable detection assembly. In one embodiment, the system can continuously and without interruptions scan a surface from a 1-meter standoff while generating Raman spectral-frames at rates of 25 Hz.
Owner:PERATON INC

Fiber delivery system with enhanced passive fiber protection and active monitoring

In an optical fiber system for delivering laser, a laser beam is focused onto an optical fiber at an injection port of the system. The end portions of the fiber have cladding treatments to attenuate stray light and cladding mode light, so as to enhance the protection of the outer layer joint points. Photodetector sensors monitor scattered stray light, cladding mode light, and / or transmitted cladding mode light. Sensor signals are provided to a control unit for analyzing the fiber coupling performance. If need be, the control unit can control a laser shutter or the like to minimize or prevent damage. In materials processing applications, the photodetector signals can be analyzed to determine the processing status of a work piece.
Owner:CONTINUUM ELECTRO OPTICS

System and method for using coherently locked optical oscillator with brillouin frequency offset for fiber-optics-based distributed temperature and strain sensing applications

Systems and methods are disclosed for distributed temperature and strain sensing along a length of an infrastructure. Two optical sources, such as, external cavity lasers with a narrow linewidth, are used for launching a probe signal into a sensing fiber coupled to the infrastructure, and for producing a local oscillation signal, respectively. The optical sources are coherently locked with a predefined frequency offset with respect to each other, the predefined frequency offset being in the order of the Brillouin frequency shift. The optical sources are included in an optical phase lock loop (OPLL) system. A balanced heterodyne receiver for narrow band detection at radio frequency (RF) bandwidth receives an optical signal generated by coherent mixing of a backscattered probe signal with the Brillouin frequency shift and the local oscillation signal, and produces an output indicative of one or both of a measured temperature and a measured strain.
Owner:REDFERN INTEGRATED OPTICS

X-Ray Inspection using Wavelength-Shifting Fiber-Coupled Scintillation Detectors

A detector and methods for inspecting material on the basis of scintillator coupled by wavelength-shifting optical fiber to one or more photo-detectors, with a temporal integration of the photo-detector signal. An unpixelated volume of scintillation medium converts energy of incident penetrating radiation into scintillation light which is extracted from a scintillation light extraction region by a plurality of optical waveguides. This geometry provides for efficient and compact detectors, enabling hitherto unattainable geometries for backscatter detection and for energy discrimination of incident radiation. Additional energy-resolving transmission configurations are enabled as are skew- and misalignment compensation.
Owner:AMERICAN SCI & ENG INC

Portable coordinate measurement machine with integrated line laser scanner

A portable coordinate measurement machine for measuring the position of an object in a selected volume comprises includes an a positionable articulated arm having a plurality of jointed arm segments. The arm includes a measurement probe having an integrated line laser scanner mounted thereon. The laser may be a fiber coupled laser. Wireless data transfer and communication capability for the CMM is also possible.
Owner:FARO TECH INC

Fiber coupling module of high-power semiconductor laser

InactiveCN101833150ASolve the lack of spaceAdequate cooling spaceCoupling light guidesLight beamPrism
The invention relates to a fiber coupling module of a high-power semiconductor laser, which comprises a plurality of single-tube semiconductor lasers with the same wavelength in the same polarization state, beam collimation lenses, a glass flat plate, reflecting prisms and a focusing device, wherein expect one path of the single-tube semiconductor lasers, the other single-tube semiconductor lasers are all parallel to an axis x and arrayed in a ladder shape; the beam collimation lenses are arranged in front of each single-tube semiconductor laser, and the light emitted by each single-tube laser passes through a beam collimation lens and then passes through a reflecting prism; each reflecting prism keeps consistent with a single-tube laser corresponding to the reflecting prism on the horizontal height; the light emitted by the plurality of single-tube lasers is transmitted to the focusing device through reflecting; and beams emitted by the single-tube lasers arranged in the direction of an axis z is directly transmitted to the focusing device through gaps among the plurality of the reflecting prisms and then combined with other beams to focus together and then enter a fiber. In the invention, the distances of the welding positions of each single-tube laser become longer, and the high-power semiconductor laser fiber coupling module has easy welding, convenient debugging, good heat radiating effect and high coupling efficiency.
Owner:吉林省长光瑞思激光技术有限公司

X-ray inspection using wavelength-shifting fiber-coupled scintillation detectors

A detector and methods for inspecting material on the basis of scintillator coupled by wavelength-shifting optical fiber to one or more photo-detectors, with a temporal integration of the photo-detector signal. An unpixelated volume of scintillation medium converts energy of incident penetrating radiation into scintillation light which is extracted from a scintillation light extraction region by a plurality of optical waveguides. This geometry provides for efficient and compact detectors, enabling hitherto unattainable geometries for backscatter detection and for energy discrimination of incident radiation. Additional energy-resolving transmission configurations are enabled as are skew- and misalignment compensation.
Owner:AMERICAN SCI & ENG INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products