A self-similarity mode locking optical fiber femtosecond laser device based on spectrum compression and amplification is composed of an optical fiber coupling output laser diode, a wavelength division multiplexing coupler, a ytterbium-mixed monomode optical fiber, an optical fiber frequency spectrum filter, a monomode optical fiber, an optical fiber collimator, a quarter-wave plate, a half-wave plate, a polarization splitting prism, a 45-degree reflector, a grating and an optical fiber isolator. Spectrum is compressed by using the self-phase modulation generated when negative chirp pulses are amplified in the ytterbium-mixed monomode optical fiber, narrow-band chirp-free picosecond pulses are formed, the optical fiber frequency spectrum filter is used for eliminating residual side lobes in nonlinear spectrum compression, self-similarity evolution is completed in the monomode optical fiber, broadband linear chirp parabola pulses are output directly, and Fourier transformation extremity femtosecond lasers are output after chirps are eliminated. The self-similarity mode locking optical fiber femtosecond laser device is high in efficiency, large in self-similarity evolution spectrum widening amount, capable of obtaining Fourier transformation extremity femtosecond laser pulses high in energy and narrow in pulse width, compact in structure and easy to operate.