Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

95 results about "Regenerative circuit" patented technology

A regenerative circuit is an amplifier circuit that employs positive feedback (also known as regeneration or reaction). Some of the output of the amplifying device is applied back to its input so as to add to the input signal, increasing the amplification. One example is the Schmitt trigger (which is also known as a regenerative comparator), but the most common use of the term is in RF amplifiers, and especially regenerative receivers, to greatly increase the gain of a single amplifier stage.

Automotive energy-regenerative active suspension system with rigidity and damping variable

The invention discloses an automotive energy-regenerative active suspension system with rigidity and damping variable. The suspension system comprises a suspension variable-rigidity mechanism, a suspension energy-regenerative mechanism and an active suspension control system. The suspension variable-rigidity mechanism comprises a low-rigidity spring, a magneto-rheological damper and a high-rigidity spring. The suspension energy-regenerative mechanism is formed by bi-directionally connecting a linear motor, an energy-regenerative circuit and a storage battery in sequence. The active suspension control system includes a controller. The data input end of the controller is connected with a vibration measuring and processing circuit. The magneto-rheological damper and the control input end of the linear motor are respectively connected with the control output end of the controller. The suspension system can automatically adjust the damping and rigidity at the same time, so that the good steering stability and ride comfort of a finished automobile are achieved; the control system is high in response speed; energy consumption is substantially lowered, and therefore the economy requirement of the finished automobile is met; moreover, the structure and a control algorithm are simple, working is stable and reliable, service life is long, and the suspension system can be conveniently applied to an existing automotive suspension so that real-time control can be achieved.
Owner:JILIN UNIV

Semi-adaptive voltage scaling for low-energy digital vlsi-design

A semi-adaptive voltage scaling method and device for determining minimal supply voltages for digital electronic semiconductor circuitry, e.g., microprocessors, of electronic devices under production testing and “real” operating conditions. The SAVS operates in a closed-loop during a production test phase of the circuitry and in an open-loop mode in an application (operation) phase of the semiconductor circuitry. During production testing, a lowermost level of the supply voltage for the semiconductor circuitry is determined at one single defined temperature at which operating specifications of the circuit are met. The lowermost level is stored in a dedicated electronic memory of the circuitry together with temperature dependent parameters. Afterwards, when the digital electronic circuitry is operated in a “real” application, e.g., a mobile phone, the device and method reads the previously measured and proven data from the memory and regenerates the minimum level of supply voltage for the circuitry, taking into account the actual temperature of the application. As a result, the digital semiconductor circuitry in the “real” application is supplied with a minimum level of supply voltage, whereby specified parameters of the circuitry are met. Thus, a power consumption of the circuitry is advantageously reduced to a minimum.
Owner:ST ERICSSON SA

Hydraulic control apparatus for controlling hydraulic cylinder for implement

A hydraulic control apparatus for controlling a hydraulic cylinder for an implement selectively mounted to a work vehicle. The apparatus includes a hydraulic power source, a four-position changeover control valve disposed between the hydraulic cylinder and the hydraulic power source, and an operational mechanism for operating the four-position changeover control valve. The four-position changeover control valve has a first position for moving a rod of the hydraulic cylinder in one direction, a second position for stopping the rod of the hydraulic cylinder, a third position for moving the hydraulic cylinder rod at a high speed in the other direction with using a function of a regenerative circuit and a fourth position for moving the hydraulic cylinder rod in the other direction at a standard speed without using the function of the regenerative circuit, in the mentioned order. The operational mechanism includes, along an operational movement path thereof, a rollback position, a neutral position, a rapid dump position and a standard dump position, the rollback position corresponding to the first position, the neutral position corresponding to the second position, the rapid dump position corresponding to the third position, the standard dump position corresponding to the fourth position, respectively.
Owner:KUBOTA LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products