Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

308 results about "Soft X-rays" patented technology

Method and apparatus for generating high output power gas discharge based source of extreme ultraviolet radiation and/or soft x-rays

An EUV photon source includes a plasma chamber filled with a gas mixture, multiple electrodes within the plasma chamber defining a plasma region and a central axis, a power supply circuit connected to the electrodes for delivering a main pulse to the electrodes for energizing the plasma around the central axis to produce an EUV beam output along the central axis, and a preionizer for ionizing the gas mixture in preparing to form a dense plasma around the central axis upon application of the main pulse from the power supply circuit to the electrodes. The EUV source preferably includes an ionizing unit and precipitator for collecting contaminant particulates from the output beam path. A set of baffles may be disposed along the beam path outside of the pinch region to diffuse gaseous and contaminant particulate flow emanating from the pinch region and to absorb or reflect acoustic waves emanating from the pinch region away from the pinch region. A clipping aperture, preferably formed of ceramic and / or Al2O3, for at least partially defining an acceptance angle of the EUV beam. The power supply circuit may generates the main pulse and a relatively low energy prepulse for homogenizing the preionized plasma prior to the main pulse. A multi-layer EUV mirror is preferably disposed opposite a beam output side of the pinch region for reflecting radiation along the central axis for output along the beam path of the EUV beam. The EUV mirror preferably has a curved contour for substantially collimating or focusing the reflected radiation. In particular, the EUV mirror may preferably have a hyperbolic contour.
Owner:USHIO DENKI KK

Extreme ultraviolet soft x-ray projection lithographic method and mask devices

The present invention relates to reflective masks and their use for reflecting extreme ultraviolet soft x-ray photons to enable the use of extreme ultraviolet soft x-ray radiation projection lithographic methods and systems for producing integrated circuits and forming patterns with extremely small feature dimensions. The projection lithographic method includes providing an illumination sub-system for producing and directing an extreme ultraviolet soft x-ray radiation lambd from an extreme ultraviolet soft x-ray source; providing a mask sub-system illuminated by the extreme ultraviolet soft x-ray radiation lambd produced by the illumination sub-system and providing the mask sub-system includes providing a patterned reflective mask for forming a projected mask pattern when illuminated by radiation lambd. Providing the patterned reflective mask includes providing a Ti doped high purity SiO2 glass wafer with a patterned absorbing overlay overlaying the reflective multilayer coated Ti doped high purity SiO2 glass defect free wafer surface that has an Ra roughness<=0.15 nm. The method includes providing a projection sub-system and a print media subject wafer which has a radiation sensitive wafer surface wherein the projection sub-system projects the projected mask pattern from the patterned reflective mask onto the radiation sensitive wafer surface.
Owner:CORNING INC

Method For Manufacturing Reflective Optical Element, Reflective Optical Elements, Euv-Lithography Apparatus And Methods For Operating Optical Elements And Euv-Lithography Apparatus, Methods For Determining The Phase Shift, Methods For Determining The Layer Thickness, And Apparatuses For Carrying Out The Methods

The invention relates to a method for manufacturing of a multilayer system (25) with a cap layer system (30), in particular for a reflective optical element for the extreme ultraviolet up to the soft x-ray wavelength range, comprising the steps of: 1. preparing a coating design for the multilayer system (25) with cap layer system (30); 2. coating a substrate (20) with the multilayer system (25) with cap layer system (30); 3. spatially resolved measurement of the coated substrate in terms of reflectance and photoelectron current in at least one surface point; 4. comparison of the measured data with data modelled for different thicknesses of the layers (31, 32, 33) of the cap layer system (30) and/or the layers (21, 22, 23, 24) of the multilayer system (25) for determining of the thickness distribution obtained by the coating; 5. if necessary, adjusting of the coating parameters and repeating steps 2 to 5 until the coated thickness distribution coincides with the design. The invention also relates to further manufacturing methods, reflective optical elements, EUV-lithography apparatuses, and methods for operating optical elements and EUV-lithography apparatuses as well as methods for determining the phase shift, methods for determining the layer thickness, and apparatuses for carrying out the methods.
Owner:CARL ZEISS SMT GMBH

Self-supporting transmission metal grating based on nanometer stamping technology and its preparation method

The invention relates to a high-intensity, self-supporting transmission metal grating which is made based on nanometer imprinting technique, and is used for diffraction of deep ultraviolet ray, soft X ray and material particle; the line density of the metal grating is larger than 2000 bars per millimeter, the grating is not supported by any substrate, a gap between the metal lines of the grating is hollow, the metal lines are supported by metal network structure with enough intensity and relatively larger cycle (1 to 40 micrometer), the metal material of the grating is made by gold. The manufacturing steps: (1) high density metal grating is prepared on the substrate through nanometer imprinting technique, reactive ion etching technique and electrochemical filming technique; (2) metallic network supporting structure with major cycle is prepared through photo-etching technique and electrochemical filming technique; (3) the substrate is removed by a chemical etching method to lead the grating to be hollow; (4) focused ion beam technology is used for repairing local defects generated during the manufacturing process of the transmission grating. The metal grating of the invention has the advantages that the manufacture method for the nanometer imprinting technique preparation grating structure is convenient and reliable, which greatly reduces the manufacture cost.
Owner:NANJING UNIV

Multiple-energy-point spectrum resolution soft-X-ray framing imaging system

The invention provides a multiple-energy-point spectrum resolution soft-X-ray framing imaging system. The imaging system mainly comprises a pin hole array plate, glancing incidence plane mirrors, an optical adjusting mechanism, a filter disc, a light limiting slit, a recording medium and the like. The glancing incidence plane mirrors and the filter disc form an X-ray enable element, each glancing incidence plane mirror and one row of pin holes form an imaging channel, the diameter of each row of pin holes is subjected to optimum design according to observation energy points so as to obtain optimum spatial resolution, and an imaging result is recorded by finally utilizing a time-resolved framing camera or a time-integrated X-ray imaging plate and the like. The imaging system is mainly used for observing laser fusion, Z-hoop condensation polymerization or a high-temperature high-density plasma in a laboratory astrophysical experiment and can obtain plasma evolution images having time resolution, two-dimensional space resolution and spectrum resolution through one-time experiment. Compared with the prior art, the multiple-energy-point spectrum resolution soft-X-ray framing imaging system has the advantages of being low in implementation difficulty, wide in application range, flexible in energy area configuration and good in imaging signal to noise ratio and having a multiple-energy-point imaging characteristic and the like.
Owner:LASER FUSION RES CENT CHINA ACAD OF ENG PHYSICS
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products