Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

130 results about "SSZ-13" patented technology

SSZ-13 (framework type code CHA) is an aluminosilicate zeolite mineral possessing 0.38 × 0.38 nm micropores. It belongs to the ABC-6 family of zeolites as well as offretite, cancrinite, erionite and other related minerals. The framework topology is the same as that of chabazite but SSZ-13 has high-silica composition with Si/Al > 5 which leads to low cation exchange capacity. The typical chemical formula of the unit cell can be described as QₓNayAl2.4Si33.6O₇₂•zH₂O (1.4 < x <27)(0.7 < y < 4.3)(1 < z <7), where Q is N,N,N-1-trimethyladamantammonium. The material was patented by Chevron research Company in 1985, and has a potential use as a solid catalyst for the methanol-to-olefins (MTO) process and the selective catalytic reduction (SCR) of NOx.

Cu-SSZ-13 molecular sieve based catalyst adopting core-shell structure as well as preparation and application of catalyst

The invention relates to a Cu-SSZ-13 molecular sieve based catalyst adopting a core-shell structure as well as preparation and an application of the catalyst and belongs to the technical field of purification treatment of nitric oxide in the technical field of environmental protection. An SSZ-13 molecular sieve is taken as a carrier and subjected to desilicication treatment with NaOH solutions with different concentrations, and a mesoporous structure is introduced to the molecular sieve; then, a mesoporous template agent is added to a turbid liquid containing the mesoporous molecular sieve, and an aluminosilicate shell adopting a mesoporous structure is self-assembled on the surface of the molecular sieve; finally, the corresponding catalyst is prepared with an ion exchange method. The working temperature window of the catalyst is widened, the hydrothermal stability and the hydrocarbon toxicosis resisting capability of the catalyst are improved, and the catalyst has good actual application prospect; in a motor vehicle exhaust component simulation experiment, the removal efficiency of NOx is 90% or higher; the removal efficiency of NOx is 80% or higher after the catalyst is subjected to hydrothermal ageing for 24 h at the temperature of 750 DEG C; ; the removal efficiency of NOx is 80% or higher in the presence of propylene.
Owner:TSINGHUA UNIV

Copper-based supported ammoxidation catalyst and preparation method thereof

The invention discloses a copper-based supported ammoxidation catalyst and a preparation method thereof. The catalyst takes CuO as an active component and is expressed as CuO/M (M represents a supporter), wherein the supporting ratio is m(CuO)/m(M)=0.1. The invention also provides the preparation method of the copper-based supported ammoxidation catalyst. The prepared copper-based supported ammoxidation catalyst is applicable to ammonia gas purification for fixed sources and movable sources and can be applied in the downstream position of an SCR system to eliminate ammonia escape. Meanwhile, the catalyst is also applicable to treatment of ammonia gas produced and exhausted in breeding industry plants and agricultural sources. Compared with other ammoxidation catalysts, the catalyst copper-based supported ammoxidation catalyst taking SSZ-13 as a supporter has the characteristics of no toxicity, high activity, high selectivity and the like, good NH3 conversion rate is realized by the aidof the active component CuO, high Na selectivity is guaranteed by the aid of the supporter SSZ-13, and 90% or above of N2 selectivity can be kept in the whole temperature window. The copper-based supported ammoxidation catalyst has good catalytic activity and N2 selectivity in a wide temperature test interval at 200-400 DEG C.
Owner:TSINGHUA UNIV

Method for synthesizing SSZ-13 molecular sieve through solid-phase grinding

The invention relates to the field of molecular sieve preparation, and aims to provide a method for synthesizing an SSZ-13 molecular sieve through solid-phase grinding. The method for synthesizing the SSZ-13 molecular sieve through solid-phase grinding comprises the following steps: weighing a silicon source, an aluminum source, an alkali source and a template agent for crystallization reaction so as to obtain a crystallization reaction product after the reaction is completed, cooling and washing till being neutral, drying to obtain crude molecular sieve powder, and roasting the crude molecular sieve powder for 5 hours in air of 550 DEG C, thereby obtaining a final product SSZ-13 molecular sieve. The SSZ-13 molecular sieve with relatively good crystallinity degree is synthesized through solid-phase raw material grinding under a solvent-free condition, so that the use of solvent water is reduced to the maximum extent, the synthesis route only involves mixing synthesis steps of primary raw materials, the method is greatly simplified when being compared with a conventional method, the yield and the utilization rate of a single kettle are both relatively increased, the production cost is greatly lowered, the pollution to the environment is greatly reduced, and great industrial application prospect can be achieved.
Owner:ZHEJIANG UNIV

Method for synthesizing Cu-SSZ-13 molecular sieve catalyst by one step

InactiveCN106238092AOptimizing Hydrothermal Aging PropertiesHigh solid phase yieldMolecular sieve catalystsCrystalline aluminosilicate zeolitesAlkali metalChemistry
The invention relates to a method for synthesizing Cu-SSZ-13 molecular sieve catalyst by one step. The method is characterized by comprising the following steps: (1) mixing an organic amine template agent and deionized water; adding or not adding an NaOH aqueous solution; adding Cu-TEPA clathrate, and stirring evenly; adding an aluminum source and a silicon source, and stirring until all materials are mixed evenly; (2) placing a mixed solution obtained in step (1) into a stainless reaction still with a tetrafluoroethylene or para-polyphenylene lining; crystallizing the reaction still for 12 hours to 6 days at 100 to 200 DEG C.; (3) washing a crystallized product for a plurality of times until the solution is neutral; drying the obtained solid product in a drying oven for 5 to 12 hours at 60 to 150 DEG C; heating the dried solid to 500 to 600 DEG C. and roasting for 3 to 10 hours so as to obtain the Cu-SSZ-13 molecular sieve catalyst product. By adopting the method disclosed by the invention, the use amount of the N,N,N-trimethyl-1-ammonium adamantane template agent is greatly reduced, and the alkali metal ion content of the product is controlled, so that the hydrothermal aging property of the catalyst is optimized.
Owner:WUXI WEIFU ENVIRONMENT PROTECTION CATALYST

Preparation method of SSZ-13 hydrogen type molecular sieve, and preparation method of SCR catalyst

The invention discloses a preparation method of an SSZ-13 hydrogen type molecular sieve, and a preparation method of SCR catalyst, and relates to the technical field of catalyst; the preparation method of the SSZ-13 hydrogen type molecular sieve can shorten the preparation time of the SSZ-13 hydrogen type molecular sieve and reduce the preparation cost, the SCR catalyst can be produced on a largebatch. The preparation method of the SSZ-13 hydrogen type molecular sieve includes steps of mixing aluminum source, template agent and silicon source in the alkali water solution together, and performing gelatinization reaction to obtain gel; under the effect of crystal seed, performing crystallization reaction on the gel, performing the first roasting on the crystalized matter to obtain a first roasting matter; performing ion exchange on the first roasting matter by ammonium salt solution; performing the secondary roasting on the first roasting matter after the ion exchange, so as to obtain the SSZ-13 hydrogen type molecular sieve. The hydrogen type molecular sieve comprises a preparation method of the mentioned SSZ-13 hydrogen type molecular sieve. The SSZ-13 hydrogen type molecular sieve provided by the invention is applied to preparation of the nitric oxide transformation catalyst.
Owner:FUYANG XINYIHUA MATERIAL TECH

SSZ-13 molecular sieve catalyst as well as preparation method and application thereof

The invention provides an SSZ-13 molecular sieve catalyst as well as a preparation method and application thereof. The preparation method comprises the following steps: adding a sodium source, a silicon source, an aluminum source, a boron source, a template agent and deionized water into a synthesis kettle according to a ratio, then dynamically or statically crystallizing in temperature stages, filtering, washing and drying the product to obtain molecular sieve raw powder; roasting the molecular sieve raw powder at high temperature in the air atmosphere for removing the template agent, exchanging the molecular sieve raw powder with ammonium ions, then roasting the molecular sieve raw powder at the high temperature to obtain a hydrogen type SSZ-13 molecular sieve with a high silicon-aluminum ratio (the ratio of nSiO2 to nAl2O3 is greater than 80), wherein the hydrogen type SSZ-13 molecular sieve has appropriate acidic sites, thermal stability and aperture size. According to the SSZ-13 molecular sieve with controllable and high silicon-aluminum ratio, high crystallinity, small crystal grains, the range of the silicon-aluminum ratio of SSZ-13 prepared by the conventional method is broken through; the problem that the crystallinity of the molecular sieve catalyst during regeneration is reduced can be solved; when the SSZ-13 molecular sieve is used as a catalyst and is applied to MTO reaction, the SSZ-13 molecular sieve has extremely high reaction activity and selectivity.
Owner:CHINA CATALYST HLDG CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products