Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1084 results about "Synzyme" patented technology

Synzymes are substances with catalytic capabilities. The name synzyme is derived from synthetic enzyme. Current synzymes consist mainly of organic molecules tailored in such a way that they catalyse certain kinds of reactions. Like enzymes, they bind a transition state of a substrate in an active site, and like enzymes they generally obey Michaelis-Menten kinetics.

Method and system for rapid biomolecular recognition of amino acids and protein sequencing

Methods, compositions, kits, and apparatus are provided wherein the aminoacyl-tRNA synthetase system is used to analyze amino acids. The method allows very small devices for quantitative or semi-quantitative analysis of the amino acids in samples or in sequential or complete proteolytic digestions. The methods can be readily applied to the detection and/or quantitation of one or more primary amino acids by using cognate aminoacyl-tRNA synthetase and cognate tRNA. The basis of the method is that each of the 20 synthetases and/or a tRNA specific for a different amino acid is separated spatially or differentially labeled. The reactions catalyzed by all 20 synthetases may be monitored simultaneously, or nearly simultaneously, or in parallel. Each separately positioned synthetase or tRNA will signal its cognate amino acid. The synthetase reactions can be monitored using continuous spectroscopic assays. Alternatively, since elongation factor Tu:GTP (EF-Tu:GTP) specifically binds all AA-tRNAs, the aminoacylation reactions catalyzed by the synthetases can be monitored using ligand assays. Microarrays and microsensors for amino acid analysis are provided. Additionally, amino acid analysis devices are integrated with protease digestions to produce miniaturized enzymatic sequenators capable of generating either N- or C-terminal sequence and composition data for a protein or peptide. The possibility of parallel processing of many samples in an automated manner is discussed.
Owner:NANOBIODYNAMICS

Method and system for rapid biomolecular recognition of amino acids and protein sequencing

Methods, compositions, kits, and apparatus are provided wherein the aminoacyl-tRNA synthetase system is used to analyze amino acids. The method allows very small devices for quantitative or semi-quantitative analysis of the amino acids in samples or in sequential or complete proteolytic digestions. The methods can be readily applied to the detection and / or quantitation of one or more primary amino acids by using cognate aminoacyl-tRNA synthetase and cognate tRNA. The basis of the method is that each of the 20 synthetases and / or a tRNA specific for a different amino acid is separated spatially or differentially labeled. The reactions catalyzed by all 20 synthetases may be monitored simultaneously, or nearly simultaneously, or in parallel. Each separately positioned synthetase or tRNA will signal its cognate amino acid. The synthetase reactions can be monitored using continuous spectroscopic assays. Alternatively, since elongation factor Tu:GTP (EF-Tu:GTP) specifically binds all AA−tRNAs, the aminoacylation reactions catalyzed by the synthetases can be monitored using ligand assays. Microarrays and microsensors for amino acid analysis are provided. Additionally, amino acid analysis devices are integrated with protease digestions to produce miniaturized enzymatic sequenators capable of generating either N- or C-terminal sequence and composition data for a protein or peptide. The possibility of parallel processing of many samples in an automated manner is discussed.
Owner:NANOBIODYNAMICS

Recombinant microorganism for preparing dharma diene and protopanoxadiol and construction method thereof

The invention discloses a recombinant microorganism for preparing dharma diene and protopanoxadiol and a construction method of the recombinant microorganism. The construction method of the recombinant bacteria comprises a step of adding dharma diene synthase, protopanoxadiol synthase and nicotinamide adenine dinucleotide phosphate - cytochrome P450 reductase encoding gene into saccharomyces cerevisiae to obtain recombinant bacteria I. According to the recombinant microorganism for preparing the dharma diene and the protopanoxadiol and the construction method of the recombinant microorganism, by means of homologous recombination, the dharma diene synthase, the protopanoxadiol synthase and the nicotinamide adenine dinucleotide phosphate - the cytochrome P450 reductase encoding gene are all added into the saccharomyces cerevisiae to obtain the initial recombinant bacteria, and the effect that the initial recombinant bacteria can produce trace amount of the dharma diene and trace amount of the protopanoxadiol is discovered; tHMG1 activity of the initial recombinant bacteria is further improved, and therefore intermediate recombinant bacteria are obtained, and by means of the intermediate recombinant bacteria, the yield of the dharma diene and the yield of the protopanoxadiol are significantly increased; the activity of one or two or three of ERG1, ERG9 and ERG20 are improved on the basis of the intermediate recombinant bacteria, and the effect that the recombinant bacteria which can be used to increase the yield of the dharma diene and the yield of the protopanoxadiol are constructed is also discovered. By means of the recombinant microorganism for preparing the dharma diene and the protopanoxadiol and the construction method of the recombinant microorganism, the foundation is laid for artificially synthesizing the dammar diene and the protopanoxadiol.
Owner:TIANJIN INST OF IND BIOTECH CHINESE ACADEMY OF SCI +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products