Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

643results about "Nitrated acyclic/alicyclic/heterocyclic amine explosive compositions" patented technology

Energetic ion salts of 1-nitramine-2, 4-dimetridazloe and preparation method thereof

The invention discloses energetic ion salts of 1-nitramine-2, 4-dimetridazloe and a preparation method thereof, and belongs to the technical field of energetic materials. The synthetic method is as follows: dissolving the 1-nitramine-2, 4-dimetridazloe in deionized water to obtain a pale yellow clear liquid, adding with stirring 0.5 time molar equivalent of potassium carbonate at room temperature for in-situ generation of 1-nitramine-2, 4-dimetridazloe potassium salt, then adding one time molar equivalent of ammonium chloride, hydrazine hydrochloride, guanidine hydrochloride, monoaminoguanidine hydrochloride, diaminoguanidine hydrochloride, triaminoguanidine hydrochloride and 3, 4, 5-triamino-1, 2, 4-triazole hydrochloride, stirring to precipitate a pale yellow solid precipitate, after about 1 hour of reaction, filtering the pale yellow precipitate, further recrystallizing a coarse product by use of an acetone and diethyl ether mixed solvent to obtain a pure product. The synthetic method of the invention is simple, mild in condition and high in yield, and is environmental friendly due to using of the deionized water as a solvent. The density of involved seven salts is 1.70-1.93g cm<-3>, the detonation velocity calculated by EXPLO software is between 8370 and 9209 m s<-1>, the detonation pressure is between 29.3 and 40.5 GPa, the actually measured impact sensitivity is 4-40J, the detonation performance is excellent, and the energetic ion salts are potential energetic materials.
Owner:BEIJING INSTITUTE OF TECHNOLOGYGY

Method and device for preparing nanometer-eutectic energetic material

The invention discloses a method and a device for preparing a nanometer-eutectic energetic material. The method comprises the following steps that an energetic material is dissolved in a good solvent and then is transported into a temperature gradient heating furnace through inert gases in an ultrasonic spray manner, and then nanometer-eutectic energetic material crystals are collected through a high-voltage electrostatic field and the good solvent and the inert gases are cooled and recovered. The device used in the method is formed by sequentially communicating an ultrasonic device, the temperature gradient heating furnace, the high-voltage electrostatic field and a receiving device in a sealing manner. The method can prepare the energetic material crystals with the crystal size being 20-1000nm, is wide in preparation range, and can realize continuous operation. The preparation method is simple in procedures and is easy to operate, reaction conditions are mild and are easily controlled, and the method can be applied to various kinds of eutectic explosives. The crystal grains of the prepared nanometer-eutectic energetic explosives are uniform, and the purity is larger than 99.9 percent. Waste liquid in the preparation procedures is recovered, and the minimum pollution to the environment is realized.
Owner:INST OF CHEM MATERIAL CHINA ACADEMY OF ENG PHYSICS

High energy thermoplastic elastomer propellant

A high energy propellant, comprising an oxetane thermoplastic elastomer energetic binder admixed with a high energy explosive filler. The oxetane thermoplastic elastomer energetic binder preferably comprises from about five percent to about thirty percent by weight and the high energy explosive filler comprises from about seventy percent to about ninety-five percent by weight of the composition. A preferred propellant further includes an explosive plasticizer, preferably in an amount of about four percent to about seven percent of the plasticizer by weight of the propellant. The preferred filler is selected from the group consisting of CL-20, TNAZ, RDX and mixtures thereof. The preferred plasticizer is selected from the group consisting of TNAZ, BTTN, TMETN, TEGDN, BDNPA/F, methyl NENA, ethyl NENA and mixtures thereof. In a preferred embodiment, the propellant is actually a pair of high energy propellants comprising a mixture of first and second high energy propellants with the first propellant having a burning rate at least two times faster than the burning rate of the second propellant. The first propellant includes an oxetane thermoplastic elastomer energetic binder admixed with CL-20 high energy explosive filler. The second propellant including an oxetane thermoplastic elastomer energetic binder admixed with RDX high energy explosive filter. Plasticizers and relative amounts for each of the first and second propellants are the same as for the single propellant.
Owner:UNITED STATES OF AMERICA THE AS REPRESENTED BY THE SEC OF THE ARMY

Ammonium nitrate and paraffinic material based gas generating propellants

An ammonium nitrate and paraffinic material based gas generating composition is provided. The gas generating composition includes ammonium nitrate as a oxidizer, mixed with a paraffinic material as a fuel. Examples of paraffinic material include paraffin wax, and broadly includes polyolefins. Polyolefins include polyethylene, polypropylene and polybutylene. Additionally, as alternatives, the gas generating composition of the present invention can also include a small quantity of magnesium stearate, potassium perchlorate or alternatively, RDX. The ammonium nitrate oxidizer, the paraffinic material fuel and the additional alternative components are combined and mixed in a predetermined stoichiometric ratio. The gas generating composition is devoid of metal oxides and produces virtually no particulate and slag upon ignition. It also produces an acceptable, low level of undesirable trace effluents such as carbon monoxide, and nitric oxide, both of which are inherently present in nonazide gas generating compositions. The gas generating composition is environmentally friendly after the deployment of the gas generant and abrasive damage to the tooling used in the manufacture of the gas generating composition is minimized.
Owner:ADVANCED INFLATOR TECH L L C

Preparation of explosive and explosion lamination method of texture interface

The invention discloses preparation of skin explosive and an explosion lamination method of a texture interface. A base plate with a certain texture structure is arranged on the surface; an outwards-protruding or flat covering plate is pressed into a concave part of the base plate under the action of the skin explosive or other explosion energy; a convex part of a base plate material is sunk into a concave part of the covering plate, so that the tight combination is realized. The skin explosive has the characteristics of stable detonation performance and good viscoelasticity, stability, storage performance and the like, and can be prepared into rolls in advance to be stored, so that explosive distribution time is shortened and the continuous production of compounding metal boards is convenient to realize; the skin explosive can be compounded with metal materials, namely plates, rods, pipes and the like. A texture interface composite plate is subjected to the explosion lamination by adopting a manner of combining physical extruding deformation with a metallurgical bonding phase, and the physical and chemical properties of sheet materials on the two sides of a combining interface are not changed; the explosive amount of a unit area is small and the energy utilization rate is high. The explosion lamination method of the texture interface can be applied to the production of metal plates and thin plates, which have greater physical property difference, such as melting points.
Owner:UNIV OF SCI & TECH OF CHINA

Nano-explosive preparation system and nano-explosive preparation method based on microfluidic technology.

The invention relates to the field of initiating explosive devices, in particular to a nano-explosive preparation system and a nano-explosive preparation method based on the microfluidic technology. The system comprises a fluid driving unit, a recrystallization unit, a sample collection unit and a connection component; the fluid driving unit is used for driving solvents and non-solvent solutions;the recrystallization unit comprises a temperature control device and a microchip; the microchip comprises a micro-mixing structure; after the fluid driving unit drives the solvents and the non-solvent solutions to contact with the microchip, rapid mixing can be realized at a recrystallization temperature under the action of the micro-mixing structure to form suspensions; the sample collection unit is used for collecting the suspensions flowing out from the microchip; the connection component is sequentially connected with the fluid driving unit, the recrystallization unit and the sample collection unit. The nano-explosive preparation system and the nano-explosive preparation method have the advantages that the solvents and the non-solvent solutions are rapidly mixed to react to generate the suspensions through the temperature control device and the micro-mixing structure of the recrystallization unit, and the suspensions are washed, filtered and dried to obtain nano-explosives with uniform crystal forms, good crystal appearance and concentrated particle size distribution.
Owner:NANJING UNIV OF SCI & TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products