Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

545results about How to "Efficient coating" patented technology

Method for preparing hollow glass microsphere coating titanium dioxide

The invention discloses a method for preparing titanium dioxide for coating surfaces of hollow glass microspheres. The method comprises: washing the hollow glass microspheres with alkali liquor to remove impurities and etching to improve activity; performing surface activation and modification by using a silane coupling agent; mixing the activated hollow glass microspheres and distilled water in a mass ratio of 1:10; fully stirring at 40 to 90 DEG C; in the stirring process, dripping solution of titanium sulfate at a constant speed with in 2 to 6 hours according to a mass ratio of the hollow glass microspheres to the titanium sulfate of 1:0.8-1:1.6; slowly adding alkali liquor, keeping the pH value of the reaction system between 5 and 7, and stirring first at a speed of 400r/min for the first 1/5 of reaction time and then at a speed of 100 to 300r/min for the rest 4/5 of reaction time; and after the reaction is finished, standing, performing suction filtration, washing with distilled water, drying and calcining. The hollow glass microspheres coated with the titanium dioxide can serve as filler for reflective and thermal-insulation coating. Compared with common hollow glass microspheres, the hollow glass microspheres can be used for preparing and synthesizing high-performance coating combining various thermal-insulation mechanisms.
Owner:SHANGHAI UNIV

Electrophoretic insulated glass unit

An electrophoretic insulated glass unit (IGU) comprises an electrophoretic laminate and a pane spaced apart from the electrophoretic laminate, the respective inner faces of the laminate and the pane defining a sealed cavity there between. An outer face of the electrophoretic laminate is in contact with an environment. One inner face of the cavity has a coating that is transparent to visible light and which rejects infrared light greater than a cut-off wavelength. The electrophoretic laminate includes an electrophoretic device including charged particles of at least one type in an electrophoretic cell, the particles being responsive to an electric field applied to the electrophoretic device to move between: a first extreme light state in which particles are maximally spread within the cell to lie in the path of sunlight through the cell and to strongly absorb visible sunlight transmitted through the cell and a second extreme light state in which the particles are maximally concentrated within the cell to remove them from the path of sunlight through the cell and to substantially transmit visible sunlight through the cell. The coating is arranged to direct thermal radiation emitted by the charged particles to the environment in contact with the outer face, and the sealed cavity is arranged to direct thermal conduction diffusing from the charged particles to the environment in contact with the outer face.
Owner:E INK CORPORATION

In-situ preparation method of water-based lubricant containing molybdenum disulfide nanosheet

An in-situ preparation method of a water-based lubricant containing a molybdenum disulfide nanosheet comprises six steps as follows: (1), a surface active agent is dissolved in deionized water in a proportion to obtain a solution; (2), molybdenum disulfide powder is uniformly dispersed into the solution; (3), a molybdenum disulfide dispersion liquid is subjected to ultrasonic cavitation processing; (4), the solution is left to stand for a certain period of time, and a supernatant liquid of the solution is taken; (5), the obtained solution is subjected to centrifugal separation processing; (6) the supernatant liquid of the centrifugal solution is collected, and the water-based lubricant containing the in-situ prepared molybdenum disulfide nanosheet is obtained. The method is easy, convenient and feasible, and the dispersion stability of the molybdenum disulfide nanosheet is good. A friction experiment result indicates that the wear-resistant and anti-friction performance of the lubricant can be greatly improved by adding a small quantity of the molybdenum disulfide nanosheet on the premise that the original excellent characteristics of good cooling performance and processability and the like of the water-based lubricant are not influenced, and the addition quantity of the molybdenum disulfide nanosheet ranges from 0.001% to 1%.
Owner:BEIHANG UNIV

Method for preparing graphene water-based lubricating agent in situ

The invention discloses a method for preparing a graphene water-based lubricating agent in situ, belonging to the field of application of graphene serving as a nanometer lubricating additive. The lubricating agent consists of graphene nanoparticles, a surface modifier and purified water. The method comprises the following preparation steps: 1, dissolving a surfactant in deionized water according to a ratio, thereby obtaining a liquid; 2, uniformly dispersing graphene powder in the liquid; 3, performing ultrasonic cavitation treatment on the graphene dispersion liquid; 4, standing the liquid for a certain time, and taking the upper liquid; 5, performing centrifugal separation treatment on the obtained liquid; and 6, collecting the supernatant of the centrifuged liquid, thereby obtaining the water-based lubricating agent containing graphene prepared in situ. The method disclosed by the invention is simple in feasible, and the dispersion stability of the graphene is high. The friction test result proves that according to the extremely small addition amount (0.001-1 percent) of the graphene, the anti-wear and friction reduction properties of the lubricating agent can be greatly improved, and excellent characteristics such as good inherent cooling property, high machinability and environment friendliness of the water-based lubricating agent are not influenced.
Owner:BEIHANG UNIV

Method for preparing nanometer aluminum composite powder coated with nitro-cotton

The invention discloses a method for preparing nanometer aluminum composite powder coated with nitro-cotton. The method includes the steps of: dispersing nanometer aluminum powder into absolute ethyl alcohol; adding silane coupling agent with the weight accounting for 5-10% of that of the nanometer aluminum powder to obtain nanometer aluminum powder treated by the silane coupling agent; dissolving the nitro-cotton and plasticizer into ethyl acetate or acetone; dispersing the nanometer aluminum powder treated by the silane coupling agent into cyclohexane to form cyclohexane dispersing agent; adding nitro-cotton liquor into the cyclohexane dispersing agent and evenly mixing the nitro-cotton liquor; and performing filtering and vacuum drying to obtain the nanometer aluminum composite powder coated with the nitro-cotton, wherein the weight of the nitro-cotton is 0.04-0.15 time that of the aluminum powder, and the weight of the plasticizer accounts for 3-10% of that of the nitro-cotton. The nanometer aluminum powder is firstly treated by the silane coupling agent and then coated with the nitro-cotton, the surface of the nanometer aluminum powder is effectively coated with the nitro-cotton, the activity of the nanometer aluminum powder can be kept, and the oxidation resistance of the nanometer aluminum powder is improved.
Owner:XIAN MODERN CHEM RES INST
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products