Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

936 results about "8-bit" patented technology

In computer architecture, 8-bit integers, memory addresses, or other data units are those that are 8 bits (1 octet) wide. Also, 8-bit CPU and ALU architectures are those that are based on registers, address buses, or data buses of that size. 8-bit is also a generation of microcomputers in which 8-bit microprocessors were the norm.

Multi-dimensional data protection and mirroring method for micro level data

The invention discloses a data validation, mirroring and error/erasure correction method for the dispersal and protection of one and two-dimensional data at the micro level for computer, communication and storage systems. Each of 256 possible 8-bit data bytes are mirrored with a unique 8-bit ECC byte. The ECC enables 8-bit burst and 4-bit random error detection plus 2-bit random error correction for each encoded data byte. With the data byte and ECC byte configured into a 4 bit×4 bit codeword array and dispersed in either row, column or both dimensions the method can perform dual 4-bit row and column erasure recovery. It is shown that for each codeword there are 12 possible combinations of row and column elements called couplets capable of mirroring the data byte. These byte level micro-mirrors outperform conventional mirroring in that each byte and its ECC mirror can self-detect and self-correct random errors and can recover all dual erasure combinations over four elements. Encoding at the byte quanta level maximizes application flexibility. Also disclosed are fast encode, decode and reconstruction methods via boolean logic, processor instructions and software table look-up with the intent to run at line and application speeds. The new error control method can augment ARQ algorithms and bring resiliency to system fabrics including routers and links previously limited to the recovery of transient errors. Image storage and storage over arrays of static devices can benefit from the two-dimensional capabilities. Applications with critical data integrity requirements can utilize the method for end-to-end protection and validation. An extra ECC byte per codeword extends both the resiliency and dimensionality.
Owner:HALFORD ROBERT

Post-Recording Data Analysis and Retrieval

When making digital data recordings using some form of computer or calculator, data is input in a variety of ways and stored on some form of electronic medium. During this process calculations and transformations are performed on the data to optimize it for storage. This invention involves designing the calculations in such a way that they include what is needed for each of many different processes, such as data compression, activity detection and object recognition. As the incoming data is subjected to these calculations and stored, information about each of the processes is extracted at the same time. Calculations for the different processes can be executed either serially on a single processor, or in parallel on multiple distributed processors. We refer to the extraction process as “synoptic decomposition”, and to the extracted information as “synoptic data”. The term “synoptic data” does not normally include the main body of original data. The synoptic data is created without any prior bias to specific interrogations that may be made, so it is unnecessary to input search criteria prior to making the recording. Nor does it depend upon the nature of the algorithms / calculations used to make the synoptic decomposition. The resulting data, comprising the (processed) original data together with the (processed) synoptic data, is then stored in a relational database. Alternatively, synoptic data of a simple form can be stored as part of the main data. After the recording is made, the synoptic data can be analyzed without the need to examine the main body of data. This analysis can be done very quickly because the bulk of the necessary calculations have already been done at the time of the original recording. Analyzing the synoptic data provides markers that can be used to access the relevant data from the main data recording if required. The nett effect of doing an analysis in this way is that a large amount of recorded digital data, that might take days or weeks to analyze by conventional means, can be analyzed in seconds or minutes. This invention also relates to a process for generating continuous parameterised families of wavelets. Many of the wavelets can be expressed exactly within 8-bit or 16-bit representations. This invention also relates to processes for using adaptive wavelets to extract information that is robust to variations in ambient conditions, and for performing data compression using locally adaptive quantisation and thresholding schemes, and for performing post recording analysis.
Owner:ASTRAGROUP AS

A CNN-based low-precision training and 8-bit integer quantitative reasoning method

The invention provides a CNN-based low-precision training and 8-bit integer quantization reasoning method. The method mainly comprises the steps of carryin gout low-precision model training; Performing model training by using a 16-bit floating point type low-precision fixed point algorithm to obtain a model for target detection; Quantifying the weight; Proposing an 8-bit integer quantization scheme, and quantizing the weight parameters of the convolutional neural network from 16-bit floating point type to 8-bit integer according to layers; carrying out 8-bit integer quantitative reasoning; quantizing the activation value into 8-bit integer data, i.e., each layer of the CNN accepts an int8 type quantization input and generates an int8 quantization output. According to the invention, a 16-bit floating point type low-precision fixed point algorithm is used to train a model to obtain a weight; Compared with a 32-bit floating point type algorithm, the method has the advantages that the 8-bit integer quantization reasoning is directly carried out on the weight obtained by training the model, the reasoning process of the convolutional layer is optimized, and the precision loss caused by the low-bit fixed point quantization reasoning is effectively reduced.
Owner:成都康乔电子有限责任公司 +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products