Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

91 results about "Gas laser device" patented technology

Gas laser apparatus, and method and device for monitoring blower

A gas laser apparatus including a laser oscillating section including a blower forcibly circulating a medium gas in a medium circuit, and a blower monitoring section monitoring a maintenance state of the blower. The blower includes a lubricant storage chamber storing a lubricant, and a lubricant monitoring chamber connected to the lubricant storage chamber to ensure fluidic communication therebetween at a position lower than an oil level of a lubricant having a predetermined appropriate volume and stored in the lubricant storage chamber. The blower monitoring section includes a lubricant detecting section detecting that a lubricant stored in the lubricant storage chamber of the blower flows into the lubricant monitoring chamber and at least a part of the lubricant is present in the lubricant monitoring chamber, as a result of internal-pressure change in the lubricant storage chamber, and a lubricant-change judging section monitoring whether the lubricant detecting section detects a presence of the lubricant in the lubricant monitoring chamber, before the laser oscillating section is activated, and judging that, when the lubricant detecting section does not detect the presence, the lubricant stored in the lubricant storage chamber is in a state immediately after a lubricant change.
Owner:FANUC LTD

Device for fast and low-loss replacement of laser output mirror

The invention discloses a device for fast and low-loss replacement of a laser output mirror, relating to the field of high-power gas laser devices. The device comprises a cavity valve, an output mirror mounting flexible pipe seat, a first pipeline, a second pipeline and a pressure sensor, wherein the cavity valve is hermetically mounted on a working cavity of the laser device, the aperture of a channel of the cavity valve is not less than the clear aperture on the working cavity of the laser device, and a channel hole and a light through hole are coaxially mounted; a flange at one end of the output mirror mounting flexible pipe seat is hermetically and coaxially mounted on the cavity valve, and a flange at the other end is hermetically connected with the laser output mirror through a lens gland bush of the laser device; holes communicated with the outside are formed in the flanges of the output mirror mounting flexible pipe seat, and the first pipeline, the second pipeline and the pressure sensor are respectively hermetically connected with the holes formed in the flanges of the output mirror mounting flexible pipe seat; and pipe valves are respectively mounted on the first pipeline and the second pipeline. The device disclosed by the invention can greatly shorten the replacement time of the laser output mirror and realize very small waste of working gas of the laser device.
Owner:CHANGCHUN INST OF OPTICS FINE MECHANICS & PHYSICS CHINESE ACAD OF SCI

Fabrication method for combined cylindrical discharge high-power gas laser and combined cylindrical discharge high-power gas laser device

The invention relates to a fabrication method for a combined cylindrical discharge high-power gas laser and a combined cylindrical discharge high-power gas laser device, and belongs to the field of optics and optical engineering. The method is characterized in that an inner cylinder and an outer cylinder that are coaxial are placed on a symmetric axis of the device in an embedded manner, and a radio-frequency power supply discharges to excite the combined cylinder to obtain high-power hollow annular carbon dioxide laser beams or carbon dioxide laser beams. A four-mirror stable resonator is adopted, so that high-power laser output can be achieved under a condition of a short laser cavity. The higher-power hollow annular carbon dioxide laser or the carbon dioxide laser can be used for laser processing, material processing and other aspects, and the lower-power hollow annular carbon dioxide laser or the carbon dioxide laser can be used for laser cosmetology, laser surface processing and the like. The hollow annular laser beams can be focused into a hollow beam with a smaller dark space, and can be used for optical spanners, optical tweezers, optical conduits and the like. The device has the advantages that the device is compact in structure and high in output power, and the beams are convenient to transform.
Owner:XIHUA UNIV

Axial fast flow gas laser device

The invention discloses an axial fast flow gas laser device, which comprises a resonant cavity, a gas circulation cooler, a surface plate, discharge electrodes, a radio frequency power supply and a gas pump, wherein the resonant cavity comprises a front reflecting mirror, a catadioptric mirror, a rear reflecting mirror, discharge tubes and a light path bracket; the light path bracket is connected with a plurality of discharge tubes to be arrayed into a rectangle light path; the catadioptric mirror is arranged at the corner of the light path; the front and rear reflecting mirrors are arranged at both ends of the light path; the discharge electrodes are arranged on the discharge tubes; the discharge electrodes are connected to the radio frequency power supply; the gas of the discharge tubes is excited by the radio frequency under the excitation of the radio frequency power supply to form a plasma to generate the glow discharge phenomenon to be incident upon one photon of the plasma of the gas generating the laser; the plasma can generate two photons to emit. The photons oscillate back and forth on the light path between the front and rear reflecting mirrors to generate the laser; the light path bracket is arranged on the surface plate; the gas circulation cooler is arranged at the back of the surface plate; and after generating the laser, the gas is cooled and recycled in the gas circulation cooler under the action of the gas pump.
Owner:刘娟明

Side face pumping slab waveguide DPAL laser device

ActiveCN105552698AReduces the possibility of contaminating the laser output windowAvoid uneven distributionLaser detailsWaveguideCarbon particle
A side face pumping slab waveguide DPAL laser device comprises an LD pumping module L, an LD pumping module R, a light guide pipe L, a light guide pipe R and a one-dimensional waveguide resonance cavity. The LD pumping module L and the LD pumping module R are symmetrically placed about the one-dimensional waveguide resonance cavity. The light guide pipe L and the light guide pipe R are symmetrically placed about the one-dimensional waveguide resonance cavity. All semiconductor laser devices of the LD pumping module L are placed on a spherical face in a stack array or linear array mode and point to a pumping window, wherein the pumping window, in the direction of the LD pumping module L, of the one-dimensional waveguide cavity serves as the center of the spherical face. All semiconductor laser devices of the LD pumping module R are placed on a spherical face in a stack array or linear array mode and point to a pumping window, wherein the pumping window, in the direction of the LD pumping module R, of the one-dimensional waveguide cavity serves as the center of the spherical face. the double-edge side face pumping mode is adopted for the laser device, and therefore the possibility that carbon-particle-polluted lasers generated after high-power-density pumping light and alkane type mixed gas react are output out of window pieces is greatly lowered; the light beam shaping process is simplified, and the problem that pumping light is not uniformly distributed is avoided; the modularized thought is adopted, and the laser device is suitable for various optical pump gas laser devices.
Owner:INST OF ELECTRONICS CHINESE ACAD OF SCI

Method and system for processing immersed workpiece by double laser light

ActiveCN105728954AReduce the development of microstructural defects to microcracksReduce the effects of local overheatingWelding/soldering/cutting articlesLaser beam welding apparatusLaser processingGas laser device
The invention discloses a method and a system for processing an immersed workpiece by double laser light. The method includes focusing the laser light A with the wavelength of 1064 nm on the surfaces of the workpiece in water and locally softening the heated workpiece; focusing the laser light B with the wavelength of 10640 nm on the water above the workpiece; breaking through the water by the aid of the laser light B to generate impact waves, enabling the impact waves to act on locally softened regions of the surfaces of the workpiece and removing softened materials so as to groove and process the workpiece. A focus point of the laser light A and a focus point of the laser light B are distanced from each other by hundreds of micrometers. Solid for generating the laser light A and the laser light B and a laser head of a CO2 gas laser device of the system are positioned above a water tank, the center line of laser beams A is a plumb line, the center line of laser beams B intersects with the laser beams A at the focus point of the laser light A on the upper surface of the workpiece, and an intersection angle of the center line of the laser beams B and the laser beams A is 10-30 degrees. The height of a worktable can be adjusted. The thicknesses of water layers on the surfaces of the workpiece are 1-3 millimeters. Compared with laser melt cutting processing, the system and the method have the advantages that the heating temperature of the laser light A is lower than melting points of the materials, accordingly, influence of local overheating can be reduced, and the quality of machined finished products can be guaranteed.
Owner:GUILIN UNIV OF ELECTRONIC TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products