Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

127 results about "Guided-mode resonance" patented technology

Guided-mode resonance or waveguide-mode resonance is a phenomenon wherein the guided modes of an optical waveguide can be excited and simultaneously extracted by the introduction of a phase-matching element, such as a diffraction grating or prism. Such guided modes are also called "leaky modes", as they do not remain guided, and have been observed in one and two-dimensional photonic crystal slabs.

Array multispectral optical filter and manufacturing method thereof

The invention relates to an array multispectral optical filter and a manufacturing method thereof, belongs to the field of a micro-nano optical filter and solves the problem of integration of multichannel array detection in an existing nanofluidic chip. The optical filter only comprises the following four layers of structures: a two-dimensional metal grating layer, a buffer layer, a waveguide layer and a substrate. The invention also provides the manufacturing method of the optical filter, which utilizes a guided mode resonance principle of a two-dimensional metal grating and implements selection of different wavelengths by regulating the period of the grating. By the thickness of the buffer layer, the half-wave bandwidth of the cut-off wavelength also can be regulated. By regulating a suitable duty cycle of the two-dimensional metal grating layer, side lobes can be reduced. Therefore, relative to other turnable optical filters, the array multispectral optical filter manufactured by the method disclosed by the invention has the outstanding advantages of simple structure, low side lobes, adjustability of the half-wave bandwidth, high transmittance, no relation with polarization and the like. After the optical fiber disclosed by the invention is adopted, the integration of the nanofluidic chip can be implemented.
Owner:广东长光中科生物科技有限公司

Guided mode resonance grating narrow line width vertical-cavity surface emitting laser (VESEL) and preparation method thereof

InactiveCN107257084AHigh anti-bandwidthHigh inverse bandwidthLaser detailsLaser active region structureMicro nanoVertical-cavity surface-emitting laser
The present invention provides a guided mode resonance grating narrow line width vertical-cavity surface emitting laser and a preparation method thereof. According to the present invention, a guided-mode resonant effect of a micro-nano grating is utilized, and a sub-wavelength guided-mode resonant microcavity structure of high reflection and narrow resonance line width is used as a part of the vertical-cavity surface emitting laser, thereby achieving the purposes of narrower laser line width, wider high reflection bandwidth, smaller size and stable polarization control. According to the present invention, by utilizing the guided-mode resonant effect of the micro-nano grating, and by the equivalent medium theoretical calculation, a weak modulated sub-wavelength grating guided-mode resonant microcavity structure of which the resonant wavelength is 852 nm is designed, and a wall used for controlling the mode line width is added between a grating layer and a waveguide layer, so that the mode line width can reach 1 nm or less. Relative to a conventional VCSEL, the narrow line width vertical-cavity surface emitting laser has the narrower laser line width, the wider high reflection bandwidth, the smaller size and the stable polarization control.
Owner:BEIJING UNIV OF TECH

Method for realizing guided-mode resonance filtering through single gradient-material grating

ActiveCN106772741AImproved resonance filter performanceGood anti-reflection propertiesOptical filtersGratingGradient material
The invention discloses a method for realizing guided-mode resonance filtering through a single gradient-material grating structure, and belongs to the field of an optical communication and MOEM (micro optical electro mechanical) system. The method is characterized in that an optical thin film, the refractive index of which increases progressively with the thickness, is prepared on a substrate, and by etching the refractive-index-gradient thin film, a guided-mode resonant grating structure is obtained, and furthermore, guided-mode resonance filtering can be realized; on the basis of the above, by selecting different etching depths, channel position of a filter can be adjusted; and with the etching depth being kept unchanged, by reducing gradient coefficient, multichannel filtering can be realized. The filtering performance of the guided-mode resonant grating structure is highly insensitive to change of substrate refractive index, so that even if the substrate refractive index is higher than the maximum value of the refractive index of the gradient thin film, the guided-mode resonance filtering performance keeps excellent; and the method breaks away from the limit that refractive index of a waveguide layer in a conventional guided-mode resonance filter needs to be higher than the substrate refractive index, and is more advantageous in practical application.
Owner:JIANGNAN UNIV

Light beam translation electric control device and method based on Goos-Hanchen displacement effect

InactiveCN101419344AEnhanced lateral displacementEasy to controlNon-linear opticsPrismElectric control
The invention relates to a electric control device for beam translation based on Goos-Hanchen shift effect and a method thereof, and belongs to the technical field of laser control. A bottom surface of a prism and a lower surface of a lithium niobate wafer of an electro optic material are respectively plated with metal films, and the bottom surface of the prism and the surface of the lithium niobate wafer are adjusted to parallel and fixed by a metal bracket so as to form a wave guide double surfaces of which are clad by metal; and the wave guide is composed of an upper metal film, an air gap, the lithium niobate wafer and a lower metal film. When laser is emitted on the surface of the wave guide, the laser is coupled into a wave guiding layer to excite lateral shift of guided-mode resonance enhanced reflected light when a phase matching condition is satisfied. The upper metal film and the lower metal film are plated with electrodes and connected with an external DC voltage source, and the voltage is adjusted; parameters of the wave guiding layer are changed by electro optic effect and piezoelectric effect of the lithium niobate, which causes Goos-Hanchen shift change of the reflected light and further realizes control on the beam translation. The electric control device and the method thereof can achieve high stability and high precision of the beam translation control, and can be applied to general environments.
Owner:SHANGHAI JIAO TONG UNIV

Thin film amorphous silicon solar cell based on antireflective structure and guided-mode resonance

The invention relates to a thin film amorphous silicon solar cell based on an antireflective structure and guided-mode resonance. The thin film amorphous silicon solar cell used for visible wavelengths ranging from 300 nanometers to 800 nanometers is characterized in that the top antireflective film of the solar cell is 55-60 nanometers in thickness, the period of the middle grating absorption layer is 505-515 nanometers, the middle grating absorption layer is 95-105 nanometers in thickness and 0.7-0.75 in duty ratio, and a waveguide absorption layer is 45-55 nanometers in thickness; when light comes in vertically, the average integral absorption efficiency of the light in the wavelengths of 300-800 nanometers is higher than 66%, the average integral absorption efficiency is large in angle independence, and the average integral absorption efficiency is higher than 60% in the incidence angle of 0-66 degrees. The thin film amorphous silicon solar cell based on the antireflective structure and guided-mode resonance has the advantages that the solar cell is machined by an electronic beam direct writing device combining with micro-electronics deep etching, and the solar cell is convenient in material taking, low in manufacturing cost, capable of achieving large-batch production, and promising in application prospect.
Owner:SHANGHAI INST OF OPTICS & FINE MECHANICS CHINESE ACAD OF SCI

All-dielectric metamaterial EIT (electromagnetically induced transparency)-like resonance device

The present invention discloses an all-dielectric metamaterial EIT (electromagnetically induced transparency)-like resonance device. The all-dielectric metamaterial EIT (electromagnetically induced transparency)-like resonance device comprises a planar waveguide and a two-dimensional periodic dielectric resonator; the planar waveguide comprises a first dielectric layer; the two-dimensional periodic dielectric resonator is composed of cuboid dielectric bars which are arranged at the upper surface of the first dielectric layer and are in two-dimensional periodic distribution; the refractive index of the cuboid dielectric bars is greater than the refractive index of the first dielectric layer; the two-dimensional periodic dielectric resonator has a resonant characteristic, so that the two-dimensional periodic dielectric resonator can generate a series of Mie resonance according to the Mie resonant principle; the two-dimensional periodic dielectric resonator has a grating-like effect, so that the two-dimensional periodic dielectric resonator can make incident waves diffracted and coupled with the guided mode of the planar waveguide; and an EIT-like effect can be generated through controlling the interaction of Mie resonance and guided mode resonance. With the all-dielectric metamaterial EIT (electromagnetically induced transparency)-like resonance device of the invention adopted, high-quality factor resonance and high resonance intensity can be achieved, and a high group refractive index can be obtained.
Owner:CHINA JILIANG UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products