Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

62 results about "Carotene synthesis" patented technology

Breeding method of oil-bearing crop with high content of vitamin A having functions of antisenescence, disease-resistant and oxidation resistance

A cultivation method of oil plant, which contains rich vitamin A and is anti-aging, disease resistant and oxidation resistant relates to the oil plant breeding technology. The method is that the spectrophotometer is used for selecting large amounts of seed resource or the gene engineering technology is used for over-expressing the crucial genes of synthesizing the carotenoid; the basic germ plasm of seeds selected contain the carotenoid which is higher than 60Mu ggFW-1; the basic germ plasm with high carotenoid content is taken as the donor and the high-quality seeds are taken as the acceptor; the conventional breeding technology is used for hybridizing to obtain high-quality breeds with high carotenoid; the HPLC method is used for detecting the carotenoid content of the breeding seeds to control the content in the range of 60-300Mu ggFW-1. The selecting method of the present invention is simple with high efficiency, accurate results, low cost and reliable resources. The plant oil squeezed from the oil plant cultivated with the method of the present invention contains rich vitamin A and is characterized by high nutrition and anti-aging, disease resistant and deterioration resistant functions.
Owner:INST OF OIL CROPS RES CHINESE ACAD OF AGRI SCI

Mutant chlorella strain capable of producing zeaxanthine and beta-carotene and culturing method thereof

The invention provides a mutant chlorella strain capable of realizing high yield of zeaxanthine and other carotenoids essential to the human body, and a culturing method thereof. The culturing method comprises the following steps: subjecting Chlorella zofingiensis ATCC 30412 to nitrosoguanidine mutagenesis; then coating a Kuhl solid medium containing DPA with treated chlorella cells for culture; selecting a single chlorella colony from the Kuhl solid medium and culturing the single chlorella colony on a Kuhl liquid medium; adding glucose in the middle and later periods of logarithm for induction of carotenoid synthesis; and detecting the variety changes and content of carotenoids in the obtained chlorella body so as to obtain the strain which can realize high yield of zeaxanthine, xanthophyll and beta-carotene and is named as CZ-ZEA1. Under the induction condition that the concentration of glucose is 30 g/L, the biomass of the CZ-ZEA1 is 12.95 g/L, and the contents of zeaxanthine, xanthophyll and beta-carotene reach 2.176 mg/g, 1.10 mg/g and 1.211 mg/g, respecitively. The mutant chlorella strain is an edible alga species and contains high-content optimally-proportioned carotenoids essential to the human body, especially zeaxanthine rare in nature; so the mutant chlorella strain is an ideal new-resource functional foodstuff for preventing deterioration and lesion of the eyes of middle aged and old people and has good development and application prospects.
Owner:KUNMING INST OF BOTANY - CHINESE ACAD OF SCI

Recombinant bacillus subtilis expressing C30 carotenoid

The invention relates to recombinant bacillus subtilis capable of synthesizing carotenoid 4,4'-diaponeurosporene with 30 carbon atoms (C30), and belongs to the biotechnology genetic engineering field. A bacillus subtilis expression plasmid pMK3-crtmn (which is capable of expressing C30 carotenoid synthases Crtm and Crtn in bacillus subtilis) containing C30 carotenoid synthase genes crtm and crtn is successfully constructed, and is successfully electro-transformed into bacillus subtilis WB800. The WB800 strain after transformation turns from the original color of white to yellow. A pigment component extracted from the recombinant WB800 is identified as 4,4'-diaponeurosporene by high performance liquid chromatography (HPLC). 4,4'-diaponeurosporene can stimulate maturation of dendritic cells, and generated cytokines (IL-6, IL-10, IL-12p70 and TNF[alpha]) have the amount increased, and moreover and have stronger ability to stimulate proliferation of T lymphocytes. With oral administration of the bacillus subtilis capable of synthesizing 4,4'-diaponeurosporene, the dextran sulphate sodium (DSS)-induced mice colitis symptoms can be significantly reduced. The bacillus subtilis capable of producing 4,4'-diaponeurosporene is expected to be developed as probiotics for prevention of colitis.
Owner:NANJING AGRICULTURAL UNIVERSITY

Research method for synthetic process of haematococcus pluvialis astaxanthin based on infrared spectroscopy microscopic imaging technology

InactiveCN108918456ASolve the problem that high-throughput measurement cannot be taken into account at the same timeResolve resolutionMaterial analysis by optical meansBeta-CaroteneLycopene
The invention discloses a research method for the synthetic process of haematococcus pluvialis astaxanthin based on an infrared spectroscopy microscopic imaging technology. The method comprises the following steps that inoculation and culture are carried out on haematococcus pluvialis; an inhibitor performs treatment on haematococcus pluvialis strains; the infrared spectroscopy of the astaxanthin,beta-carotene and lycopene are collected; the infrared microscopic spectroscopy of haematococcus pluvialis cells are detected; and comparison and analysis of imaging of the microscopic infrared spectroscopy are carried out. According to the method, the infrared microscopic spectroscopy imaging technology is utilized, the haematococcus pluvialis cells are treated by combining the inhibitor synthesized by carotenoid, and high-spatial-resolution in-situ observation is carried out on the contents of various components of the haematococcus pluvialis cells in the astaxanthi accumulation process, sothat the effects of the components in the synthesis path of the astaxanthin can be conveniently analyzed. The method has important significance in research of the synthesis path of the carotenoid inthe haematococcus pluvialis cells and large-scale breeding of the haematococcus pluvialis for production of the astaxanthin.
Owner:ANHUI SCI & TECH UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products