Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

61 results about "Gaussian laser beam" patented technology

Gauss laser beam shaping method and device and precise laser micropore processing device

The invention relates to the field of laser application, and in particular relates to a Gauss laser beam shaping method and a Gauss laser beam shaping device and a precise laser micropore processing device. A beam expanding device, a shaping device, an initial focusing lens, a hole diaphragm, a collimation device, a light beam deflection device and a focusing lens are sequentially arranged along the light path, wherein the Gauss laser beam is shaped as a flat laser beam by the shaping device after being expanded through the beam expanding device, the flat laser beam is collimated by the collimation device after being intercepted by the hole diaphragm and initially focused by the initial focusing lens, a transmission direction of the flat laser beam is changed through the light beam deflection device, and then the flat laser beam is focused through the focusing lens to obtain the laser beam for micropore processing. The Gauss laser beam is output after being shaped as the flat laser beam, the utilization rate and the processing efficiency of the laser are improved, and the energy loss is reduced; meanwhile, when the flat laser beam obtained through the focusing of the focusing lens is used for micropore processing, the hole margin of each of a through hole and a blind hole is smooth, the taper of the hole is reduced, the bottom damage of the blind hole is avoided, and the blind hole with a flat bottom is obtained.
Owner:HANS LASER TECH IND GRP CO LTD

Operating method of FSO communication system based on IHDAF protocol

The invention provides an operating method of an FSO (Free Space Optical) communication system based on an IHDAF (Incremental Hybrid Decode-Amplify-Forward) protocol, and belongs to the technical field of wireless optical communication. The FSO communication system includes a source node, a relay node and a target node and utilizes a half-duplex operating mode. The operating method of an FSO communication system based on an IHDAF protocol includes three steps: performing M-order pulse amplitude modulation on the source information; transmitting the modulated information to the relay node and the target node through a gauss laser beam, comparing the link instantaneous signal to noise ratio gamma sd from the source node to the target node and the link instantaneous signal to noise ratio gamma sr from the source node to the relay node with the signal to noise ratio threshold SNRsd and SNRsr set by the corresponding link so as to determine selecting the corresponding transmission scheme, that is, direct transmission, Decode and Forward, and Amplify and Forward; and at last, performing recovery and demodulation on the reception signal by means of the target node. The operating method of an FSO communication system based on an IHDAF protocol integrates the relay technology with the free space optical communication technology in the protocol so as to effectively restrain reduction of system performance, caused by path loss, atmospheric disturbance and aiming error and improve the transmission reliability of system.
Owner:SHANDONG UNIV

Precision laser cutting and micro-hole machining device

The invention relates to the field of laser application, in particular to a precision laser cutting and micro-hole machining device. The precision laser cutting and micro-hole machining device comprises a laser as well as a beam expansion device, a front-end reflective mirror, a rear-end reflective mirror and a focusing lens which are arranged in sequence along a light path, wherein at least one beam shaping system used for shaping Gaussian laser beams into flat-top laser beams and at least one beam optimization system used for optimizing the Gaussian laser beams are arranged between the front-end reflective mirror and the rear-end reflective mirror; the front-end reflective mirror is used for reflecting the Gaussian laser beams passing through the beam expansion device into the beam shaping system or the beam optimization system; the rear-end reflective mirror is used for reflecting laser beams emitted by the beam shaping system or the beam optimization system into the focusing lens. Only by switching the beam shaping system or the beam optimization system for production and machining, switching between micro-hole machining and cutting machining can be realized, so that the operation is simple and the production efficiency is high; with the adoption of the beam shaping system, the micro-hole machining quality can be effectively improved while the laser utilization rate is increased and the laser machining efficiency is improved.
Owner:HANS LASER TECH IND GRP CO LTD

Controllable rotary operation device and controllable rotary operation method of optical tweezers system

ActiveCN109188672AAutomatically switch rotation parametersReal-time control of rotation directionMicroscopesNeutron particle radiation pressure manipulationHigh numerical apertureOptical axis
The invention relates to a controllable rotary operation device of an optical tweezers system. The device comprises an optical tweezers generation module, a polarization state control module, a polarization state detection module, a sample stage, and an illumination and imaging module, wherein a linear polarization state Gaussian laser beam is focused by a high numerical aperture objective to forma light trap near the sample stage and stably capture the binary heterogeneous sphere; the polarization state control module is used to adjust a laser polarization state azimuth so as to control thesynchronous rotation of the captured particles around the optical axis; the polarization detection module is used to solve the laser polarization state at the light trap during the entire rotating operation; and the position and orientation of the controlled binary heterogeneous sphere are saved and recorded in real time by the illumination and imaging module. The operational steps carried out using the device described are also given. The device provided by the invention is simple and convenient to operate, and can not only control the continuous rotation of the binary heterogeneous sphere, but also control the stop of the rotation at any time to stabilize in any orientation.
Owner:TIANJIN UNIV

Method of simulating generating of large depth field programmable grating

The invention discloses a method of simulating generating of large depth field programmable grating. A laser is used to emit a laser beam, and after focusing and collimating of a collimating lens, a collimating Gaussian laser beam capable of satisfying requirements is acquired. After primary specular reflection, the laser beam passes through a circular diaphragm, and is emitted into an MEMS vibration mirror. The laser beam is reflected to a surface of a measured object by the MEMS vibration mirror. Under control of a sinusoidal current signal generated by a driving board, the laser is used for the sinusoidal modulation of the brightness of the laser beam. Under excitation of a driving signal generated by the driving board, the MEMS vibration mirror is used for two-dimensional rotation, and therefore the laser beam is driven to carry out scanning, and grating images are generated. The cycle and the phase of the driving signal of the laser are changed to acquire the grating images of different cycles and different phases. The grating generated by adopting the above mentioned technical scheme has a programmable advantage of a digital grating and a high resolution advantage of a physical grating. The field depth of the generated grating is extended by more than ten times, and therefore a measuring range is greatly improved.
Owner:XIAN CHISHINE OPTOELECTRONICS TECH CO LTD

Experimental device based on threshold value of atmospheric parameter optimization space laser communication system

The invention discloses an experimental device based on a threshold value of an atmospheric parameter optimization space laser communication system. The experimental device comprises a sending terminal and a receiving terminal; a modulation signal source of the sending terminal outputs a coded signal to control a semiconductor laser to send a Gaussian laser beam; the Gaussian laser beam is fixed on a beam expander arranged on an optical bench through optical fiber input and enters atmospheric turbulence after collimation and beam expanding, is received by a Cassegrain telescope at the receiving terminal after being transmitted for a distance in the atmospheric turbulence, and enters coupled optical fibers of a photoelectric detector after focusing; and a voltage signal output by the photoelectric detector is transmitted to a computer, and the computer processes collected data according to a calculation program and outputs the optimal fixed threshold value UST and bit error ration (BER) of the space laser communication system under the current condition. The device has no special requirements for optical elements, and is simple in structure, convenient to operate and good in optimization effect; and simultaneously, the calculation method for determining the threshold value is good in optimization effect and simple to implement.
Owner:ANHUI INST OF OPTICS & FINE MECHANICS - CHINESE ACAD OF SCI

Nanosecond solid-state laser modulation system and bonded wafer separating method

InactiveCN105977194ASolve the shortcomings of long process time and high maintenance costIncrease costSolid-state devicesSemiconductor/solid-state device manufacturingOptoelectronicsLaser beams
The invention relates to a nanosecond solid-state laser modulation system and a bonded wafer separating method. The method is characterized by comprising the following steps: (1) placing bonded wafers on a bearing platform; (2) emitting, by a laser generator, Gaussian laser beams, and modulating the Gaussian laser beams via a beam shaping mirror to generate square light spots; focusing the laser beams of the square light spots to penetrate through a glass slide and arrive at a release layer, ashing the releaser layer, and ensuring a bonding layer not damaged; (3) adjusting the relative positions of the laser generator and the bearing platform, so that the moved positions of the square light spots irradiated onto the bonded wafers are ashed, and the light spots after and before moving are partially superposed; sequentially moving the light spots to realize laser irradiation of the whole surface of the bonded wafers; and (4) after laser irradiation and ashing in the above steps, taking the glass slide down. According to the method, the release layer in the temporary bond is ashed by laser, so that batch production can be realized, yield loss is eliminated, and the output efficiency is greatly improved at the same time.
Owner:NAT CENT FOR ADVANCED PACKAGING

Laser energy transmission photoelectric conversion efficiency improvement method based on photocell array circuit optimization

The invention discloses a laser energy transmission photoelectric conversion efficiency improvement method and can reduce mismatch loss caused by nonuniform power density distribution of Gauss laser beams and improve laser energy transmission photoelectric conversion efficiency. According to the method, a circuit optimization photocell array is designed, a photocell array substrate employs a one-side tin-spraying universal plate, so the photocells can respectively realize series and parallel connection according to optimization requirements, and the photocells respectively employ monocrystalline silicon cells and are used for converting laser energy into electric energy. Compared with a photocell array in the prior art, the photocell array is arranged in an annular mode, the cells are connected according to the optimization circuit to make received laser irradiation power densities be generally identical, output currents of the cells are made to be similar, mismatch loss is reduced, and photoelectric conversion efficiency is improved. The method is advantaged in that simple structure, easy realization and strong practicality are realized, and photoelectric conversion efficiency during laser energy transmission is improved.
Owner:PLA PEOPLES LIBERATION ARMY OF CHINA STRATEGIC SUPPORT FORCE AEROSPACE ENG UNIV

Beam shaping based hidden added material type laser butt welding method

The invention provides a beam shaping based hidden added material type laser butt welding method. The method comprises the steps that (1) workpieces are clamped, a welding added material is embedded to the portion of a butt welding joint of the two to-be-welded plate workpieces, the relative directions of a laser welding joint and the workpieces are set, a dual circular ring composite shaping beamoutput by the laser welding joint is vertically incident to the portion of the butt welding joint of the workpieces and is focused to the surface; and (2) lasers are started to output the dual circular ring composite shaping beam, the dual circular ring composite shaping beam is controlled to advance in the welding seam direction, the welding seam area is subjected to overlapping scanning three times successively through an outer circular ring Bessel laser beam, an inner circle Gaussian laser beam and an outer circular ring Bessel laser beam, and finally a welding joint containing enriched added material metal is formed through solidification. According to the method, added materials of different materials and components can be selected for different kinds of plate base metal according tothe needs of application occasions, welding joints of various special properties can be achieved, a good welding seam structure can be obtained easily, and the welding joint property can be improved.
Owner:深圳市天策激光科技有限公司

Gaussian laser beam shaping method and device and precision laser microhole processing device

The invention relates to the field of laser application, and in particular relates to a Gauss laser beam shaping method and a Gauss laser beam shaping device and a precise laser micropore processing device. A beam expanding device, a shaping device, an initial focusing lens, a hole diaphragm, a collimation device, a light beam deflection device and a focusing lens are sequentially arranged along the light path, wherein the Gauss laser beam is shaped as a flat laser beam by the shaping device after being expanded through the beam expanding device, the flat laser beam is collimated by the collimation device after being intercepted by the hole diaphragm and initially focused by the initial focusing lens, a transmission direction of the flat laser beam is changed through the light beam deflection device, and then the flat laser beam is focused through the focusing lens to obtain the laser beam for micropore processing. The Gauss laser beam is output after being shaped as the flat laser beam, the utilization rate and the processing efficiency of the laser are improved, and the energy loss is reduced; meanwhile, when the flat laser beam obtained through the focusing of the focusing lens is used for micropore processing, the hole margin of each of a through hole and a blind hole is smooth, the taper of the hole is reduced, the bottom damage of the blind hole is avoided, and the blind hole with a flat bottom is obtained.
Owner:HANS LASER TECH IND GRP CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products