Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

79 results about "Particle interaction" patented technology

Optical tweezers type optical fiber Raman microprobe and manufacturing method

The invention provides an optical tweezers type optical fiber Raman microprobe and a manufacturing method. The probe has two optical channels which are coaxial, wherein an annular optical fiber core provides a Raman exciting light channel and a channel in the coaxial center is used for receiving Raman probe light; and by performing fine taper angle grinding on the fiber ends of coaxial dual waveguide channel optical fibers, a rotary symmetrical plane (or chambered surface) structure is formed. The structure can converge Raman exciting light transmitted by the annular core in a micron order, and on the one hand, the converged exciting light has an ability of capturing micron-order and nanoscale particles and on the other hand, the converged exciting light interacts with the particles, so that a back scattering Raman optical signal generated by the exciting light converged by the Raman scattering light can be collected and transmitted to a Raman spectrometer through an intermediate large-core fire cores. The microprobe provided by the invention can capture micro living matters of cell living bodies to effectively excite the Raman spectrum of the matters in cells and to obtain the Raman spectrum so as to achieve Raman measurement of micro liquids, single cells in living bodies and inner substances thereof.
Owner:GUILIN UNIV OF ELECTRONIC TECH

Apparatus for separation and processing of materials

ActiveUS20140225286A1Effectively frictionlessFineness is limitedLiquid degasificationReversed direction vortexCyclonic separationEngineering
This invention relates to a tubular cyclonic separation device the style of which was presented in PCT/ZA2003/000160 and which enables all of the inlet and outlet connections to be completely contained within a tubular profile, the diameter of which is that of the body of the cyclonic section. This disclosure adds further novel and inventive developments to the cyclonic device which enable it to be used as a separating device for systems involving all three phases (gas, liquid and solid) and where two, three or more different product streams may be separated, all within the same cylindrical profile. These further inventive developments also relate to the use of externally supplied gas and/or additional liquid phases which are injected through the walls of the cyclonic body using specifically located slots and/or holes in combination with specifically located stepped edges. These further novel and inventive developments enable the concepts of froth floatation (FF) and Dispersed Air Floatation (DAF) to be exploited within an enhanced gravitational field together with the options for washing the separated froth and/or the separated heavier fractions, all within the same cyclonic unit. As part of the novel and inventive introduction of the stepped edges, means are provided whereby gas bubbles smaller than 30 microns can be created on a large scale and with a reduced energy input relative to typical conventional equipment. Also the size of the gas bubbles may be controlled together with the intensity of any particle on particle interactions that may be created. This latter has many potential applications within FF and/or DAF processes, including applications within oil and tar separation from solid surfaces and within many ore preparation and ore leaching processes. The tubular profile enables processing and separation to be achieved “within the pipe line” or for very closely packed arrangements to be assembled within carrier vessels.
Owner:CYDAF TECH

Two-dimensional position detection system based on scintillator

The invention discloses a scintillator-based two-dimensional position detection system, which comprises a whole continuous scintillator, a photoelectric detection device and a two-dimensional position detection processing device, wherein the scintillator is used for receiving ray particles (such as X rays, alpha rays, gamma rays, beta rays, neutrons and the like), interacts with the ray particles to generate light signals and makes the light signals be scattered in the propagation process; the photoelectric detection device comprises n (a natural number more than 1) photoelectric detection units, and each photoelectric detection unit is used for detecting the light signals transmitted by the scintillator respectively and converting the light signals into electric signals; and the two-dimensional position detection processing device is connected with the photoelectric detection device, and is used for determining the distribution center of the light signals transmitted by the scintillator according to the electric signals converted by each photoelectric detection unit in the photoelectric detection device, and determining the distribution center of the light signals as the position of the ray particles which are shot to the scintillator. The scintillator-based two-dimensional position detection system provided by the invention can improve position resolution and reduce the complexity of two-dimensional position detection.
Owner:INST OF HIGH ENERGY PHYSICS CHINESE ACAD OF SCI

Double-layer doping-layer silicon-based film solar cell

The invention relates to a double doped layer silicon-based film solar cell. In a p type doped layer and an n type doped layer, the optical band gap of the layer closely adjacent to an intrinsic layer is larger than that of the layer far away from the intrinsic layer, but the difference value of the band gaps is not larger than 0.45 eV. The difference of the optical band gaps of the double doped layer structure is realized by arranging different materials according to the matching principle, or by changing the growth technology parameter of the identical material to control the optical band gaps. According to the invention, the inhibition to the particle interaction at the interface between the doped layers and the intrinsic layer and the control to the dopant particles and the accumulation and the distribution of defects can be realized simultaneously, excessive defects in the intrinsic layer can be reduced, simultaneously, the initial photoelectric conversion efficiency and the irradiation stability of the solar cell can be improved, the production cost for the silicon-based film solar cells can be further reduced, therefore, the structure can be applied to any silicon-based single-junction solar cell, laminated solar cell and multi-junction solar cell with p-i-n structure and n-i-p structure.
Owner:SOUTH WEST INST OF TECHN PHYSICS

Numerical simulation method for interaction of coal powder particles in burning

ActiveCN105590005ARealize Holographic SimulationConvenient and efficient holographic simulationSpecial data processing applicationsPrillHybrid programming
The invention discloses a numerical simulation method for interaction of coal powder particles in burning, belonging to the technical field of computer numerical simulation. According to the characteristics of burning of the coal powder particles, the method is characterized in that on the basis of calculation of an existing mathematical model of fluid mechanics software FLUENT, FLUENT UDF and FLUENT Scheme are used for hybrid programming, and user-customized models, namely, a coal powder particles interaction model (a particle construction form, a particle mass change model, a particle size dynamic change model and a volatile element precipitation model) and a mass change storage mechanism, are coupled, so that numerical simulation of interaction of the coal powder particles in burning is realized. Experiments show that change rules of coal powder particle temperature and so on obtained through the numerical simulation method are generally consistent with experiment data. Through adoption of the method, a real, objective interaction mechanism of coal powder particles in burning is disclosed conveniently and efficiently, thereby providing powerful theoretical basis and technological support for improvement and optimization design of the coal powder burning technology.
Owner:ANHUI UNIVERSITY OF TECHNOLOGY
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products