Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

298 results about "Absorbed dose" patented technology

Absorbed dose is a dose quantity which is the measure of the energy deposited in matter by ionizing radiation per unit mass. Absorbed dose is used in the calculation of dose uptake in living tissue in both radiation protection (reduction of harmful effects), and radiology (potential beneficial effects for example in cancer treatment). It is also used to directly compare the effect of radiation on inanimate matter such as in radiation hardening.

Ground equivalent fluence calculating method for electronic component charged particle irradiation effect

InactiveCN103116176ASolve the technical problem of large error in simulation testThe calculations are realisticDosimetersProtection layerElectron
The invention relates to a simulating test method of an electronic component and discloses a ground equivalent fluence calculating method for an electronic component charged particle irradiation effect. The ground equivalent fluence calculating method for the electronic component charged particle irradiation effect aims to solve the technical problem that a ground simulation test of the irradiation effect of the existing electronic component is large in experimental error. The ground equivalent fluence calculating method for the electronic component charged particle irradiation effect comprises the following steps: measuring the energy spectrum of orbit charged particles received by the electronic component; utilizing the method of Monte-Carlo or the program of GEANT4 to calculate the in-orbit lonization and the displacement absorbed dose D1 which pass through a protection layer and reach the surface of the electronic component; determining the thickness of a sensitive area of the electronic component; determining the types and energy of particles under the selected condition of the test, calculating the lonization and the displacement absorbed dose D2 of the sensitive area under the condition of the test through the method of Monte-Carlo or the program of GEANT4; and calculating the equivalent fluence phi and the irradiation time t under the condition of a laboratory according to D1=D2. The ground equivalent fluence calculating method for the electronic component charged particle irradiation effect is used for a simulation test of the electronic component.
Owner:HARBIN INST OF TECH

Composite enhanced high-flexibility microporous silicone rubber foam material and preparation method thereof

ActiveCN104893312ATotal amount added lessGood flexibilityPolymer scienceWarm water
The invention discloses a composite enhanced high-flexibility microporous silicone rubber foam material and a preparation method thereof. The preparation method is characterized in that the preparation method comprises the steps of performing mixing and forming to 100 parts of silicone rubber base material, 10-25 parts of reinforcing agent, 2-3 parts of structure controlling agent, 80-100 parts of pore-forming agent, 0-3 parts of radiation sensitizer, 1-2 parts of tackifier and 1-3 parts of functional additive, performing radiation crosslinking at gamma ray absorbed dose of 40-60kGy, performing solventing-out pore forming through warm water, and performing drying to obtain the microporous silicone rubber foam material with excellent performance. The composite enhanced high-flexibility microporous silicone rubber foam material prepared by adopting the preparation method disclosed by the invention presents black gloss, is soft in texture, is tiny in pore diameter, is proper in crosslinking density and gel content, is higher in tensile strength and elongation at break and is excellent in resilience, the process is convenient, the energy saving performance and environmental friendliness are good, the repeatability is good and the production efficiency is high.
Owner:INST OF NUCLEAR PHYSICS & CHEM CHINA ACADEMY OF

Silicone rubber microporous foam material adopting mixed cellular structure and preparation method of silicone rubber microporous foam material

The invention discloses a silicone rubber microporous foam material adopting a mixed cellular structure and a preparation method of the silicone rubber microporous foam material. The preparation method is characterized by comprising the following steps: mixing 100 parts of a silicone rubber base material, 15-45 parts of a reinforcing agent, 2-3 parts of a structure controlling agent, 60-125 parts of a pore-forming agent and 3-5 parts of a radiosensitizer, forming, radiating through gamma rays so as to enable the formed product to be crosslinked, wherein the radiation absorbed dose is 30-70 kGy, performing solventing-out section by section to form holes, and drying, so as to obtain the silicone rubber microporous foam material with excellent performance. According to the invention, the method that radiation crosslinking cooperates with solventing-out hole forming is adopted, so that crosslinking is uniform, control is convenient, energy conservation and environment friendliness are realized, the process is simple, reproducibility is good, and production efficiency is high; the prepared silicone rubber microporous foam material adopts the mixed cellular structure, and is excellent in comprehensive performance, small in hole, pure white in color, soft in texture, proper in crosslinking density and gel content, high in tensile strength and elongation at break and low in permanent tensile deformation and compression deformation.
Owner:INST OF NUCLEAR PHYSICS & CHEM CHINA ACADEMY OF

Dose monitoring detector calibration device and method in heavy ion beam treating carcinoma

ActiveCN101285887A3D Conformal Radiation Therapy ControlImprove treatment efficiencyDosimetersBragg peakTumor target
The invention relates to a device and a method for demarcating and calibrating a dose monitoring detector in heavy ion beam cancer treatment. The structure of the device is characterized in that a collimator, the dose monitoring detector, a mini ridge-shaped filter, a water tank and a standard ionization chamber are arranged on a beam flux axis in sequence. The standard ionization chamber is arranged inside the water tank. The depth position of an irradiation beam mini spread-out Bragg peak in water is obtained by measuring absorbed dose of the standard ionization chamber at different depth in aqueous medium. At the depth position, the dose monitoring detector is demarcated and calibrated by the standard ionization chamber so as to obtain demarcating and calibrating factors of the measurement of the dose monitoring detector for the mini spread-out Bragg peak cancer treatment beam with a Gauss arrangement. With the demarcating and calibrating factors, the entire process of three-dimensional conformal irradiation therapy with uniform physical absorption dose or uniform biological effective dose in a tumor target volume can be conveniently controlled, the requirements of the treatment of different clinical cases in practical clinical treatment are satisfied, and the treatment efficiency of a treatment device is improved.
Owner:INST OF MODERN PHYSICS CHINESE ACADEMY OF SCI

Method for rapidly identifying irradiation absorbed dose of tea by using electronic nose

The invention discloses a method for identifying whether tea is irradiated and irradiation absorbed dose and a new application of an electronic nose. The identifying method comprises: employing tea samples which are treated by irradiation of different known doses; detecting the tea samples whose irradiation absorbed doses are known by the electronic nose; drawing a response diagram of tea volatile substances detected by the electronic nose; determining an identification evaluation time; calculating the variance contribution rate of an electronic nose sensor characteristic constant of each main component and the correct rate of initial group case return discrimination, and preferably choosing an effective sensor; calculating to obtain classification function coefficients of different radiation doses, and obtaining a classification function for identifying a tea sample radiation dose; detecting an unknown tea sample by the electronic nose, calculating with the classification function, and obtaining a radiation dose of the tea. Compared with the prior art for identifying tea, the identifying method provided by the invention has the characteristics of simple method, few steps, fast speed, high identification efficiency, high accuracy, etc., and the method is suitable for identifying whether the tea is irradiated or the irradiation absorbed dose.
Owner:ANHUI AGRICULTURAL UNIVERSITY

Silicon carbide ceramic material and preparation method thereof

The present invention discloses a silicon carbide ceramic material and a preparation method thereof. The method comprises: (1) irradiating polycarbosilane having a number average molecular weight of 300-4000 with high energy rays, wherein the absorbed dose of the polycarbosilane is 50-2000 kGy; and (2) carrying out pyrolysis on the irradiated polycarbosilane to obtain the silicon carbide ceramic material. According to the present invention, the silicon carbide ceramic material is prepared by using the in-situ irradiation method, such that only the chemical structure of the polymer is changed, and the impurity is not introduced; the irradiation process is completely controllable and the irradiation dose can be controlled according to the raw material characteristics to achieve the best effect, such that the yield of the silicon carbide ceramic material can be significantly improved, the production cost can be reduced, the production period can be shortened, and various molding processes and the production processes of the irradiated polycarbosilane cannot be affected; and the silicon carbide ceramic material prepared by using the preparation method has advantages of uniformity, further improved temperature resistance, further improved compactness, further improved tensile strength, and other properties.
Owner:SHANGHAI INST OF APPLIED PHYSICS - CHINESE ACAD OF SCI

Carbon-based porous flexible composite wave-absorbing material and preparation method thereof

The invention discloses a carbon-based porous flexible composite wave-absorbing material and a preparation method thereof. The carbon-based porous flexible composite wave-absorbing material and the preparation method thereof are characterized in that pretreatment is conducted on one part of a carbon-based wave-absorbing agent, and then mixing molding is conducted on the treated carbon-based wave-absorbing agent, 0.2-0.4 part of a fluxing agent, 40-100 parts of silicone rubber, 10-30 parts of reinforcing agents, 0-5 parts of radiosensitizer and 0-3 parts of flame retardants; rubber materials molded through mixing are put into a mold, rolling is conducted on the rubber materials at 100-150 kg.cm<-2>, and a thin sheet with the thickness ranging from 0.5 mm to 5 mm is prepared; after plastic sealing is conducted on the thin sheet with the mold, the plastic-sealed thin sheet with the mold is put into a gamma-ray irradiation field or an electron beam accelerator to enable the total absorbed dose to be kept at 30-100 kGy, radiation crosslinking is conducted, after a plastic package and the mold are removed, edges are cut off, and the carbon-based porous flexible composite wave-absorbing material is obtained. According to the carbon-based porous flexible composite wave-absorbing material and the preparation method thereof, the technology is simple, complex chemical process control or professional auxiliary equipment is not needed, only simple equipment such as a double-roller mixing mill is needed, and the cost is lower; the prepared material is excellent in flexibility and wave-absorbing performance, the preparation process is easy and rapid to control, the repeatability is good, and energy conservation and environment protection are achieved.
Owner:INST OF NUCLEAR PHYSICS & CHEM CHINA ACADEMY OF +1

Three-dimensional dosage verification method of nuclear magnetism guidance radiation therapy based on MRI-Only

InactiveCN107519585AAccurately measure 3D dose distributionShorten the timeX-ray/gamma-ray/particle-irradiation therapyDosimeterValidation methods
The present invention discloses a three-dimensional dosage verification method of nuclear magnetism guidance radiation therapy based on MRI-Only. The method comprises the following steps: selecting radiation therapy image information of a patient to be verified and a corresponding patient's radiation therapy plan, preparing and storing gel dosimeter phantom and a calibration phantom, scanning the gel dosimeter phantom to obtain the magnetic resonance imaging (MRI) images of a corresponding phantom, sending the magnetic resonance imaging (MRI) images of the corresponding phantom to a treatment plan system (TPS), irradiating and scanning the calibration phantom to obtain a calibration curve, making the radiation therapy plan of the gel dosimeter phantom, scanning the gel dosimeter phantom after irradiation, converting the images to an adsorbed dose graph, assessing results of measurement and calculation of the gel dosimeter phantom, and executing the patient's radiation therapy plan if the results of measurement and calculation of the gel dosimeter phantom accord with clinical assessment requirements. The three-dimensional dosage distribution of the nuclear magnetism guidance radiation therapy can be accurately measured and can be used for three-dimensional dosage verification to facilitate improvement of the radiation therapy effect.
Owner:徐榭

CO2 packaged low-temperature low-dose irradiation refreshing method for edible mushrooms

InactiveCN102524757ARespiratory suppressionReduce negative reactionsFood preservationFood preparationMicroorganismLow dose irradiation
The invention discloses a CO2 packaged low-temperature low-dose irradiation refreshing method for edible mushrooms, comprising the following steps of: step I, deairing an edible mushroom film and charging CO2 for packaging; step II, precooling the edible mushroom packaged in the step I to be 0-4 DEG C; and step III, adopting 60Co r rays or 5-10MeV electron beam rays to perform irradiation to the edible mushroom in the step II, wherein the irradiation absorbed dose is 0.1-1.0kGy, and the inequality of irradiation dose is less than 1.25. In the invention, the comprehensive irradiation refreshing method maintaining the original color, fragrance, taste and state of the edible mushrooms is adopted, when the irradiated edible mushrooms are stored at normal temperature (10-25 DEG C), the original color, fragrance, taste and state are maintained for 4 days, and when the irradiated edible mushrooms are stored at 0-4 DEG C, the original color, fragrance, taste and state are maintained for 14 days. The packaging filled with CO2 is adopted, CO2 can effectively inhibit breathing of the edible mushrooms, irradiation is performed when the edible mushrooms are precooled to be 0-4 DEG C, at 0-4 DEG C, the breathing of the edible mushrooms can be reduced, growth reproduction of harmful microorganisms polluting the edible mushrooms is inhibited, and negative reaction of edible mushrooms, caused by irradiation, at the temperature can be reduced.
Owner:宁波超能科技股份有限公司

Device for improving efficiency of treating wastewater by irradiation of electronic accelerator

The invention discloses a device for improving the efficiency of treating wastewater by irradiation of an electronic accelerator. The device comprises an irradiation chamber, wherein a water treatment reactor is arranged in the irradiation chamber; a nozzle is arranged in one side of the water treatment reactor; a water discharging port is formed in the other side of the water treatment reactor; a scanning foil window is arranged above the water treatment reactor; the electronic accelerator connected with the scanning foil window is arranged outside the irradiation chamber; a contact reactor is arranged outside the irradiation chamber; a water outlet of the contact reactor is communicated with the nozzle; an air discharging hole is formed in the upper end of the irradiation chamber and is communicated with the bottom of the contact reactor. According to the device, irradiated gas which is rich in active free radicals and ozone and wastewater perform pre-oxidization reaction in the contact reactor, so that the absorption dosage of wastewater is reduced; therefore, reacted wastewater can flow into the water treatment reactor for irradiation treatment; according to the gas dissolved in the wastewater, the density of a mixer is reduced, the penetration depth of an electronic bundle is increased, a high dose-rate effect of the electronic accelerator is reduced, and the irradiation efficiency is improved.
Owner:CGN DASHENG ELECTRON ACCELERATOR TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products